

Department of Climatology and Landscape Ecology, University of Szeged, Hungary

Outdoor thermal comfort - experimental investigations on two recreational urban spaces in Szeged, Hungary

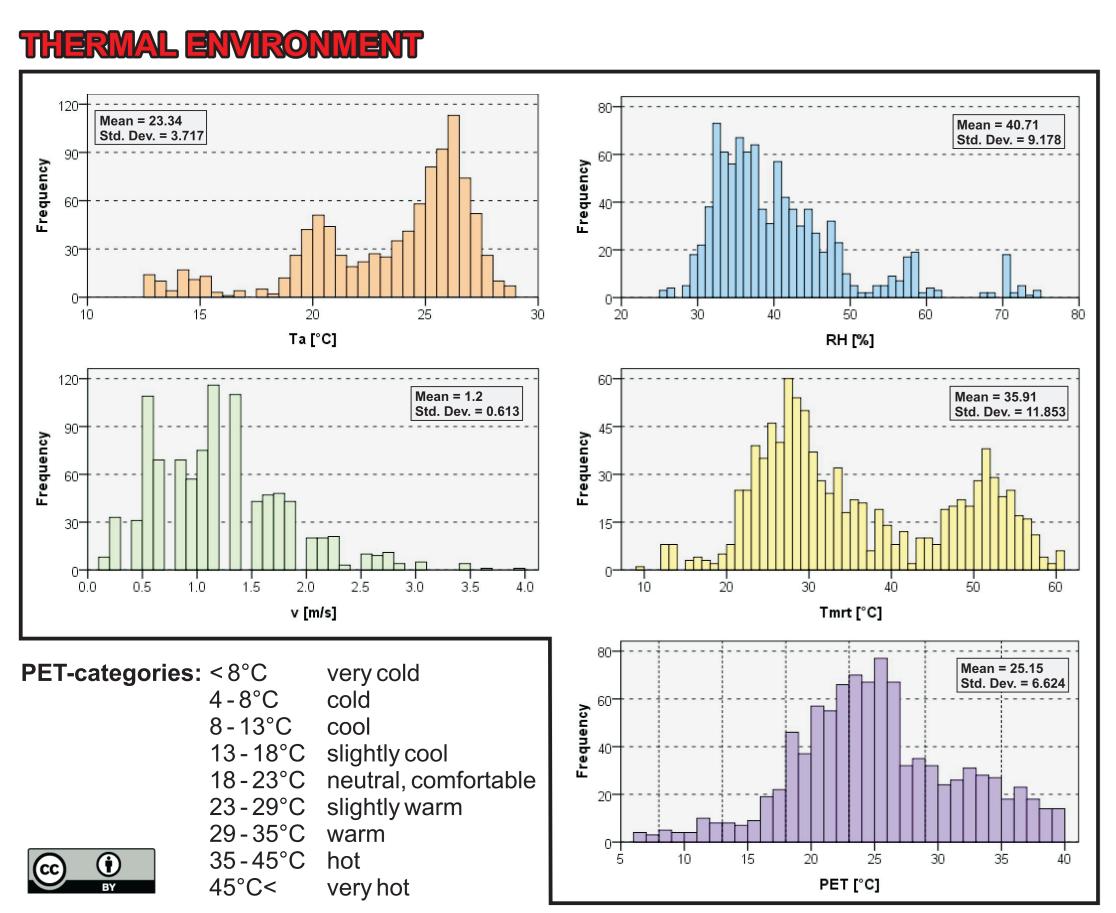
Lilla Égerházi Noémi Kántor egerhazi@geo.u-szeged.hu kantor.noemi@geo.u-szeged.hu

Szeged, Hungary 46°N, 20°E 82 m a.s.l. temperate warm

location	inner city	inner city					
size	ca. 5500 m ²	ca. 6000 m ²					
surface cover	grass	gravel, grass					
vegetation	young and old trees	old trees					
shading conditions	different	mainly penumbra					
function	resting place	resting place, playground					
visitors	mainly students	all age groups					

- 2009: 14 investigation days in early autumn Ady: 9 days / Honvéd: 5 days - 2010: 15 investigation days in late sring Ady: 7 days / Honvéd: 8 days

In the early afternoon: from 12 to 3 p.m.


Simultan conducted on-sie meteorological measurements and questionnaires

Meteorological measurements

MEASURED PARAMETER	INSTRI	UMENT	pyrgeometer ultrasonic anemometer
air temperature Ta [°C]	THERMOCAP thermometer	as part of	thermometer, hygrometer
relative humidity RH [%]	HUMICAP hygrometer	WXT 520, Vaisala,	pendrive
wind speed v [m/s]	WINDCAP anemometer	1.2 m a.g.l.	pyranometer
short-wave radiation K [W/m ²]	CM 3 pyranometer	as part of CNR 1,	
long-wave radiation L [W/m ²]	CG 3 pyrgeometer	Kipp & Zonen 1.1 m a.g.l.	
data recording	pend	drive	
averaging period	1 r	nin	accumulator

CALCULATED PARAMETERS

Tmrt [°C] mean radiant temperature (from the individual K & L fluxes) **PET [°C]** physiologically equivalent temperature (from Ta, RH, v and Tmrt)

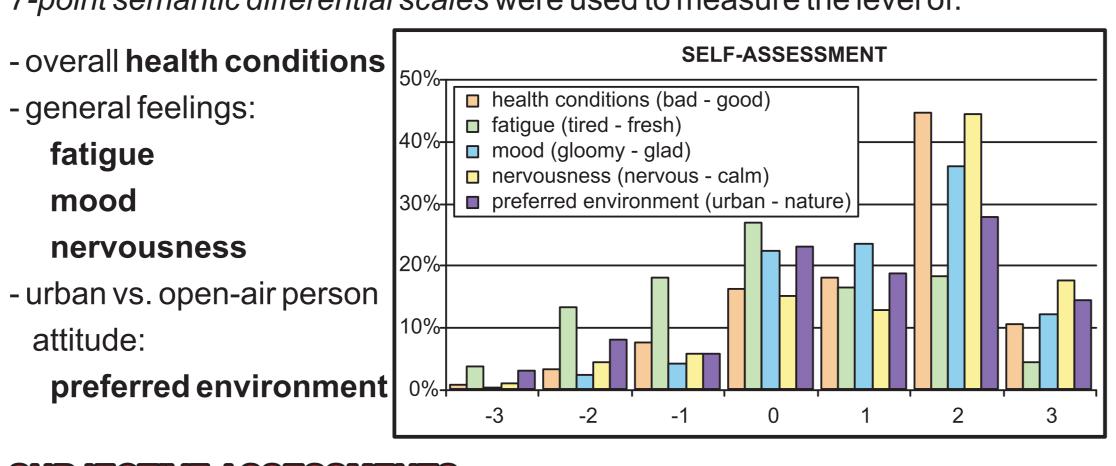
Questionnaires

Ca. 3-5 min / interview, 967 filled questionnaires / 29 days Interviewees near by the meteorological station - same solar exposure

PERSONAL FACTORS

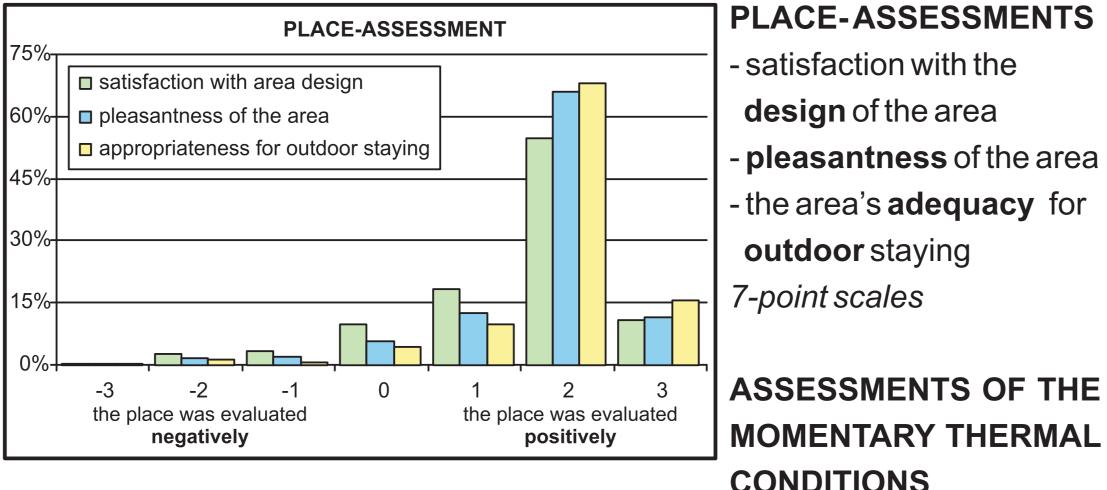
- general feelings:

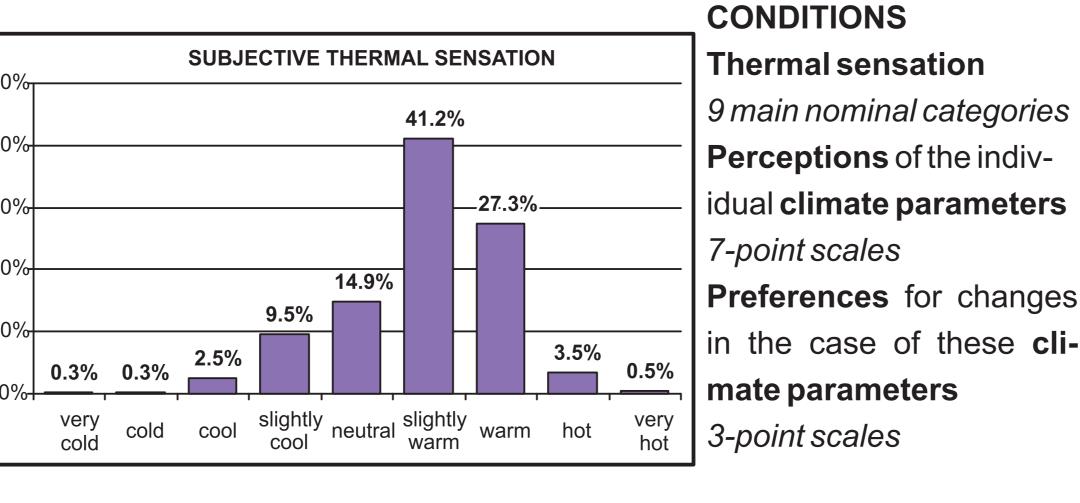
nervousness

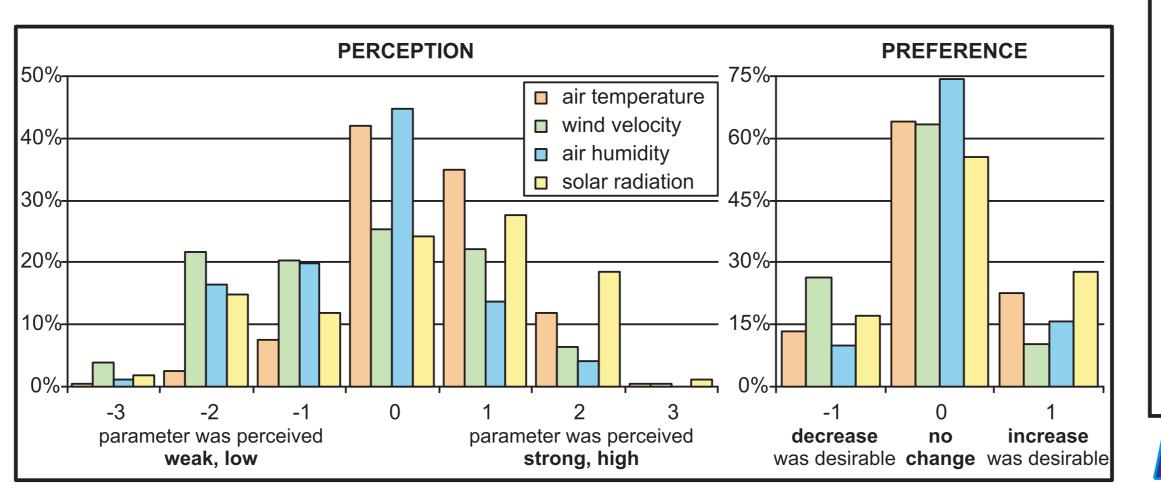

fatigue

mood

attitude:

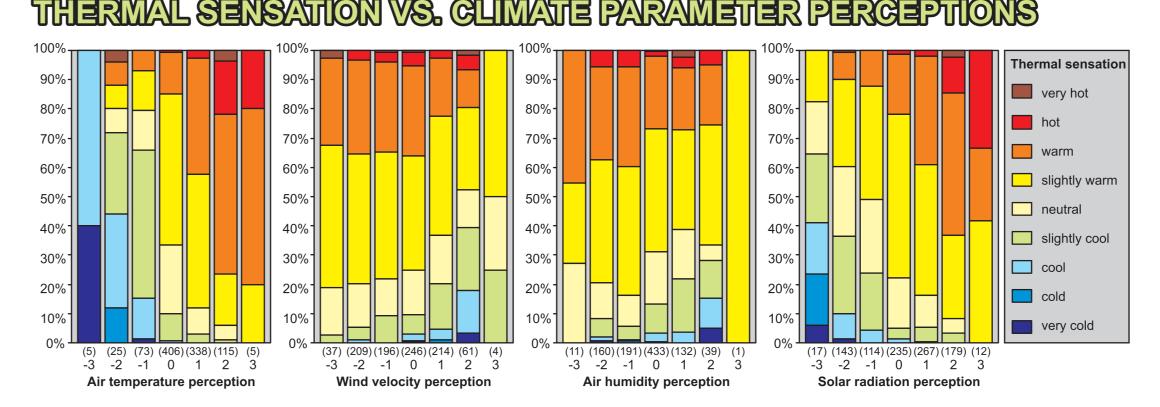

Demographics	Behaviour	Health conditions	Life style					
gender	clothing	cardiovascular diseases	smoking					
age	solar exposure	blood pressure	alcohol consumption					
height	activity	pulmonary diseases	caffeine consumption					
weight	body posture	pollinosis	sport					
		weather front sensitivity	•					

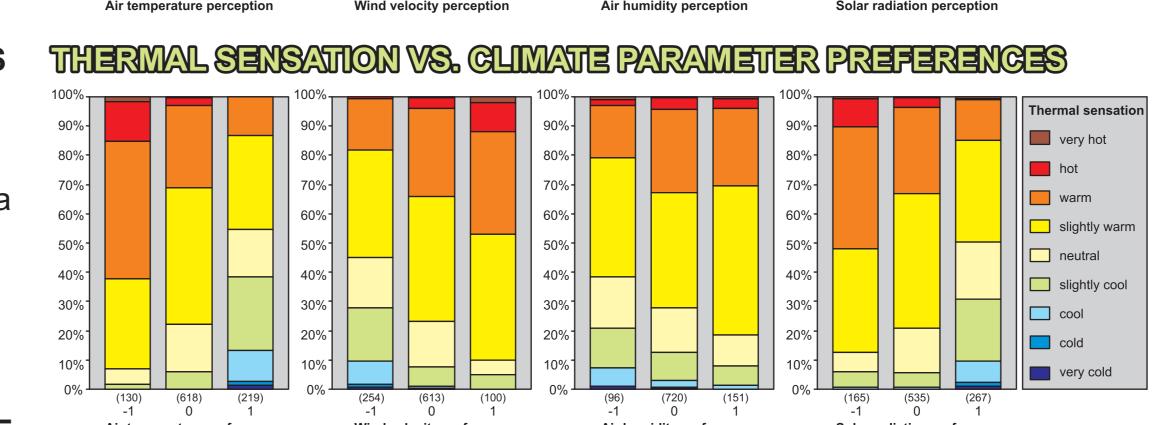

7-point semantic differential scales were used to measure the level of:

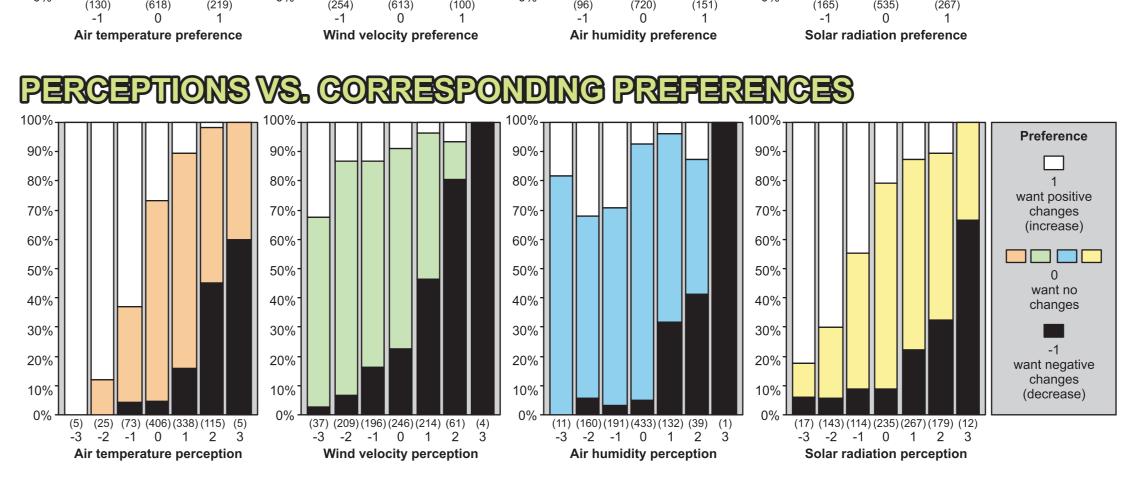


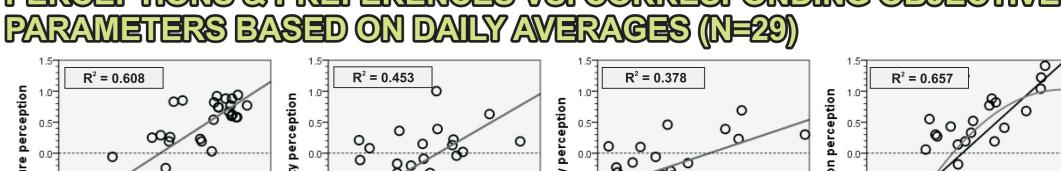
SUBJECTIVE ASSESSMENTS

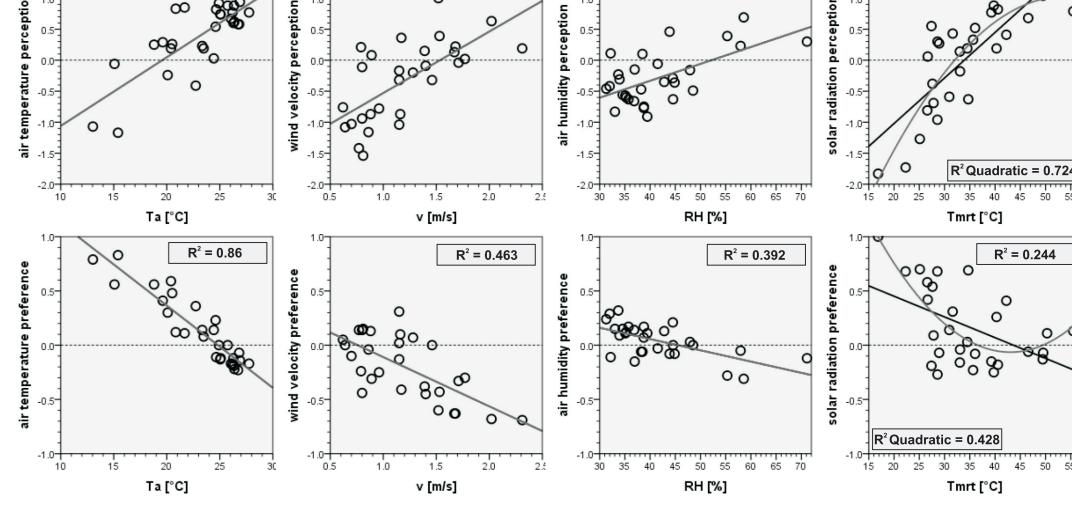
Different semantic differential scales were used to measure the visitors' subjective evaluations of the place and the thermal environment:

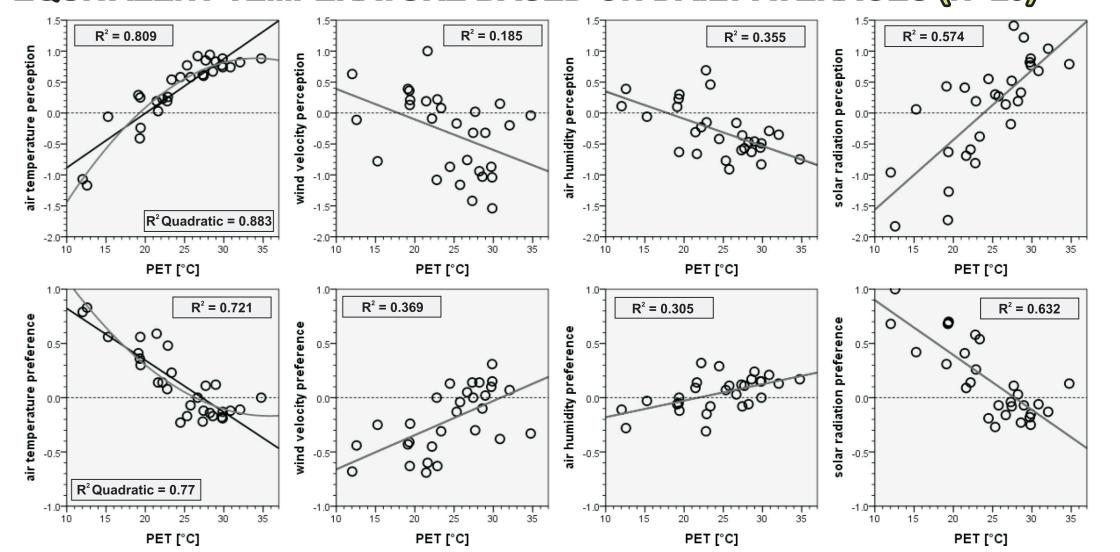


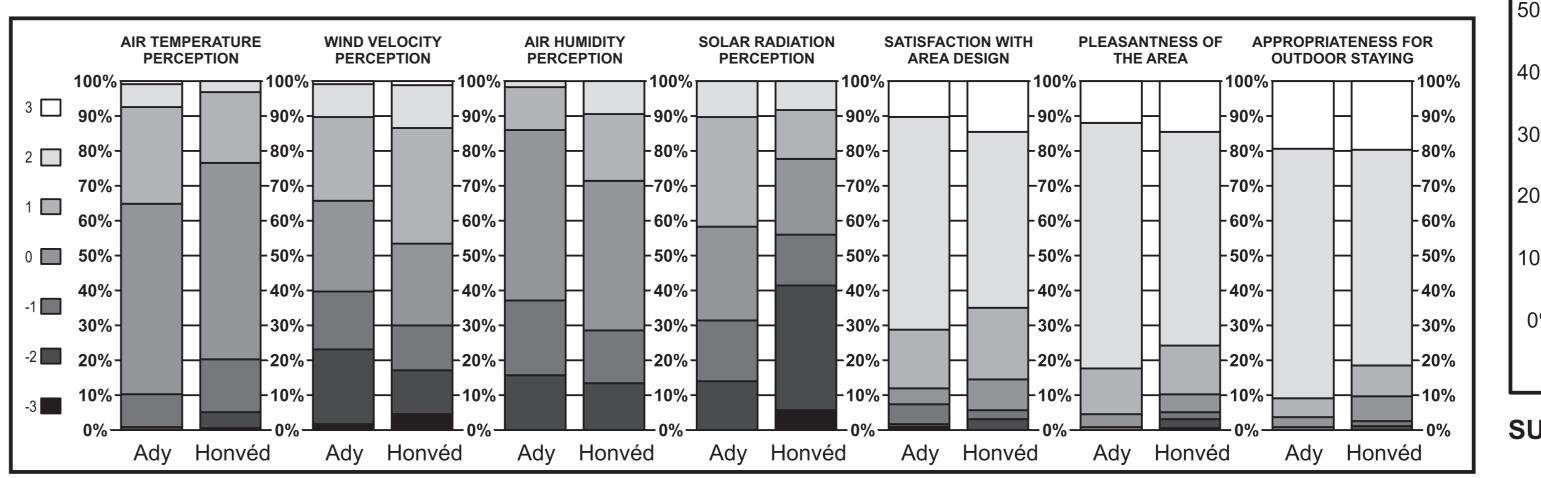


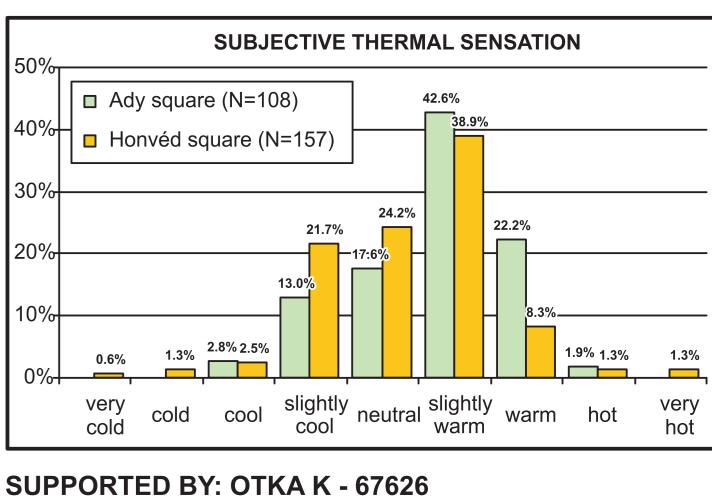



Statistical analyses


SUBJECTIVE ASSESSMENTS OF THE THERMAL ENVIRONI													NMENT THERMAL ENVIRONMENT							PERSONAL FACTORS						
	perd	ceptions (-3,	-2, -1, 0, 1, 2	2, 3) preferences (-1, 0, 1) (-4				(-4 4)				measured parameters		calculated parameters				self-assessments (-3, -2, -1, 0, 1, 2, 3)								
	air temperat.	wind velocity	air humidity	solar radiation	air temperat.	wind velocity	air humidity	solar radiation	thermal sensation		N = 967		Ta [°C]	v [m/s]	RH [%]	Tmrt [°C]	PET [°C]	N = 967		health cond.	fatigue	mood	nervousn.	preferred environm		
		-0.132 0.000	-0.153 0.000	0.505 0.000	-0.482 0.000	0.267 0.000	0.094 0.003	-0.390 0.000	0.558 0.000	ρ α	air temperature perception	ρ α	0.321 0.000	-0.087 0.007	-0.110 0.001	0.384 0.000	0.478 ρ 0.000 α	air temperature perception	ρ α	0.047 0.148	0.075 0.020	0.063 0.050	0.034 0.286	0.05		
			0.115 0.000	-0.045 0.166	0.209 0.000	-0.415 0.000	0.015 0.631	0.161 0.000	-0.182 0.000	ρ α	wind velocity perception	ρ α	-0.277 0.000	0.345 0.000	-0.012 0.700	0.007 0.839	-0.218 ρ 0.000 α	wind velocity perception	ρ α	-0.025 0.430	-0.039 0.231	0.051 0.114	-0.006 0.850	-0.01 7		
1	Spearr	nan's r	ho (ρ)	-0.179 0.000	0.151 0.000	-0.007 0.822	-0.365 0.000	0.187 0.000	-0.163 0.000	ρ α	air humidity perception	ρ α	-0.245 0.000	0,065 0.870	0.172 0.000	-0.132 0.000	-0.204 ρ 0.000 α	air humidity perception	ρ α	-0.010 0.763	0.020 0.530	0.026 0.416	-0.013 0.680	0.02 3		
	rank-cc	orrelatio	n coeff	icient	-0.370 0.000	0.218 0.000	0.137 0.000	-0.457 0.000	0.502 0.000	ρ α	solar radiation perception	ρ α	0.160 0.000	0.056 0.080	-0.208 0.000	0.492 0.000	0.450 ρ 0.000 α	solar radiation perception	ρ α	0.000 0.988	0.053 0.100	0.011 0.743	0.025 0.441	-0.92 0.51		
	were us	sed to r	eveal s	ignifica	nt	-0.403 0.000	-0.113 0.000	0.565 0.000	-0.417 0.000	ρ α	air temperature preference	ρ α	-0.441 0.000	0.184 0.000	0.052 0.105	-0.187 0.000	-0.407 ρ 0.000 α	air temperature preference	ρ α	0.042 0.190	0.054 0.094	0.105 0.001	0.024 0.460	0.03 9		
	interrela	ationsh	ips betv	ween th	e subje	ctive	0.098 0.002	-0.297 0.000	0.283 0.000	ρ α	wind velocity preference	ρ α	0.324 0.000	-0.300 0.000	-0,010 0.759	0.061 0.057	0.295 ρ 0.000 α	wind velocity preference	ρ α	0.019 0.556	0.924 0.458	-0.944 0.170	-0.013 0.690	-0.91 2 0.709		
I avaluations of the thermost environment and to							0.090 0.005	ρ α	air humidity preference	ρ α	0.123 0.000	0.001 0.979	-0.153 0.000	0.098 0.002	0.138 ρ 0.000 α	air humidity preference	ρ α	-0.011 0.730	-0.077 0.017	-0.933 0.934	-0.952 0.109	0.07 8 0.018				
show the influence of the momentary thermal conditions 0.000							ρα	solar radiation preference	ρ α	-0.372 0.000	0.088 0.006	0.172 0.000	-0.265 0.000	-0.400 ρ 0.000 α	solar radiation preference	ρ α	0.051 0.110	0.049 0.125	0.058 0.074	-0.901 0.971	0.02 0.520					
and personal parameters on these assessments (N=967).								ρα	thermal sensation	ρα	0.262 0.000	-0.087 0.007	-0.115 0.000	0.442 0.000	0.507 ρ 0.000 α	thermal sensation	ρ α	0.082 0.011	0.034 0.286	0.039 0.229	0.078 0.016	0.04 0				







EQUIVALENT TEMPERATURE BASED ON DAILY AVERAGES (N=29)

TÁMOP-4.2.1/B-09/1/KONV-2010-0005

European Geosciences Union General Assembly, Vienna, Austria, 03 – 08 April 2011