

Is soil permeability a good predictor for overland flow occurrence?

Sibylle Hassler, Helmut Elsenbeer University of Potsdam EGU 2011 – 05.04.2011

Why permeability (Ks)?

- Dependent on static and dynamic properties
 - → soil structure, porosity
 - → sensitive to land use changes

Why permeability (Ks)?

- Dependent on static and dynamic properties
 - → soil structure, porosity
 - sensitive to land use changes
- Important parameter in soil hydrology
 - determines water flow paths
 - → overland flow (OF) occurrence?
 - erosion, nutrient depletion

Why permeability (Ks)?

- Dependent on static and dynamic properties
 - → soil structure, porosity
 - sensitive to land use changes
- Important parameter in soil hydrology
 - determines water flow paths
 - → overland flow (OF) occurrence?
 - erosion, nutrient depletion
- Few studies about Ks OF relation
 - Ks studies: comparison with rainfall intensities
 - estimates of overland flow occurrence
 - Sediment studies

Study area

Central Panama, Panama Canal watershed

Climate: 27°C MDT, 2300 mm MAP

 Land use: 8% pasture, 28% young secondary forests, 50% old secondary

forests

Soil texture: silty clay, clay

Measurements

- Two sites
 - 5 year-old secondary forest (SF5)
 - 25 year-old secondary forest (SF25)
 - → land-use effect
- Plots and flow lines
 - 5 plots in SF5, 4 plots in SF25
 - All detectable flow lines at each site
 - overland flow characteristics

Measurements – SF5

Measurements

- Permeability
 - Undisturbed soil cores
 - Constant head
 - 15 cores on each plot, 2 depths

- Overland flow
 - OF detectors (OFD)
 - Daily P/A recording

- Precipitation
- Ancillary variables

Ks and OF at the sites

Ks and OF at the sites

Ks and OF on the plots

Ks and OF on the plots

Ks – rainfall intensity – **OF**

Ks – rainfall intensity – **OF**

Ks – rainfall intensity – **OF**

Possible influences

Topography?

Site	TWI
SF5	3.9
SF25	4.0

SF25

Possible influences

Topography?

Vegetation? (cover fraction)

Site	Trees	Shrubs	Grasses	Herbs	Litter
SF5	0.00	0.50	80.0	0.58	0.33
SF25	071	0.17	0.00	0.08	0.79

Possible influences

- Topography?
- Vegetation?
- Return flow?

• ...

Ks as predictor for OF

Estimation of OF occurrence from Ks values and rainfall intensities not sufficient!

- Other factors need to be considered:
 - Infiltration conditions
 - → vegetation?
 - Flow path network
 - → return flow?

Thanks to...

- Financial / Logistical support:
 - Smithsonian Tropical Research Institute (STRI)
 - HSBC Climate Partnership
 - Panama Canal Authority (ACP)
 - National Environmental Authority of Panama (ANAM)
- Field support:

Thank you for your attention!

Questions?