The stable stationary value of the Earth's global average atmospheric infrared optical thickness

Ferenc Miskolczi

Presented by Miklos Zagoni EGU2011 Vienna

Further details: IUGG 2011 June, Melbourne, Australia

International conference on the issue:

2 November 2011, Geodetic and Geophysical Research Institute, Sopron, Hungary

http://www.ggki.hu

fmiskolczi@cox.net

zagoni@ggki.hu

PLANETARY GREENHOUSE EFFECT LINKED TO ATMOSPHERIC IR ABSORPTION

THE $G = S_U - OLR$ GREENHOUSE FACTOR IS NOT THE DIRECT MEASURE OF ATMOSPHERIC IR ABSORPTION

NEED TO QUANTIFY THE ROLE OF THE GHG'S IN GLOBAL WARMING

CLEAR-SKY RADIATIVE TRANSFER MODEL

 $G = S_G - OLR$ $G_N = G / S_G$ All-sky measurements: $S_{G} = 391 \text{ Wm}^{-2}$ $OLR = 235 Wm^{-2}$

QUESTIONS:

What is the mechanism of the greenhouse effect?

What are the theoretical relationships among the global average IR flux density terms ?

NET ATMOSPHERE: (1) $F + P + K + A_{\Delta} - E_{D} - E_{U} = 0$ **NET SURFACE :**

(2) $F^0 + P^0 + E_D - F - P - K - A_A - S_T = 0$ (3) $F^0 + P^0 = OLR$

GLOBAL SCALE LBL SIMULATIONS

80 40 Latitude, degree 20 -20 -40 -60 -80 -150 -100 -50 0 50 100 150 Longitude, degree

Geographical Distribution of the 1761 TIGR Soundings

INPUT DATA SET

RADIOSONDE OBSERVATIONS ARE FROM A SUB-SET OF THE TIGR COMPILATION (A. Chedin and N. Scott 1983)

PROCESSING LBL CODE

High-resolution atmospheric radiative transfer code HARTCODE

(F. Miskolczi, M. Bonzagni and R. Guzzi, 1990)

SPECTROSCOPIC DATA SET

HITRAN 2K (http://cfa-www.Harvard.edu/HITRAN/hitrandata)

TRUE INFRARED FLUX OPTICAL THICKNESS

 $S_T = S_U \exp(-\tau_A)$ $\tau_A = -\ln\left[\frac{1}{\sigma t_A^4} \sum_{j=1}^M \pi B(\Delta v_j, t_A) \sum_{k=1}^K w^k T_A(\Delta v_j, \mu^k)\right]$ $T_A(\Delta v_j, \mu^k) = \frac{1}{\Delta v_j} \int_{\Delta v_j} \exp\left[-\sum_{l=1}^L \sum_{i=1}^N \left[c^{i,l} + k_v^{i,l}\right] \frac{u^{i,l}}{\mu^{l,k}}\right] dv$

M=3490 is the total number of spectral intervals, *K*=9 is the total number of streams, w^k is the hemispheric integration weight associated with the *k*-th direction (stream), T_A is the directional mean transmittance over a suitable short wave number interval,

$$\mu^{l,k} = \cos(\theta^{l,k}) / dz^l$$

 $\theta^{l,k}$ is the local zenith angle of a path segment, dz^{l} is the vertical layer thickness, *N*=11 is the total number of major absorbing molecular species, *L*=150 is the total number of layers. $u^{i,l}$, $c^{i,l}$ and $k^{i,l}$ are the absorber amounts, and the continuum and line type absorption coefficients.

TIGR2 SIMULATION RESULTS

Quantity	Minimum	Maximum	Global Average	GAT	
$\overline{t_A}$	232.25	309.62	285.34	286.04	
S_U	164.98	521.10	381.88	379.64	
и	0.0507	6.836	2.533	2.637	
E_U	83.74	256.71	188.94	192.7	
E_D	103.35	429.69	308.70	310.49	
T_A	0.0497150	0.391204	0.173344	0.15422	
$S_T = S_U T_A$	22.246	111.92	61.094	58.54	
$OLR = E_U + S_T$	150.64	297.62	250.05	251.25	
$\tau_A = -\ln\left(T_A\right)$	0.9385	3.0014	1.8736	1.8693	

 t_A : K; S_U , E_U , E_D , S_T , OLR: Wm⁻²; u: prcm; T_A , τ_A : dimensionless

GAT : global average TIGR2 profile

EMPIRICAL FACTS

IR radiative structure of the atmosphere from TIGR2

SATELLITE OBSERVATVATIONS ARE CONSISTENT WITH THE ATMOSPHERIC RADIATIVE EXCHANGE EQUILIBRIUM RULE

From: Longwave Surface Radiation and Climate; Lou Smith, Anne Wilber, David Kratz, Shashi Gupta and Paul Stackhouse, NASA LARC

KIRCHHOFF LAW AND RADIATIVE EXCHANGE EQUILIBRIUM

Contribution density functions Profil 3 : TIGR2-853, nasu, ASCA = -10, $\triangle Z$ = 80-250 m, h₂O = 1.7601 prcm

THEORETICAL CONSIDERATIONS

SIMULTANEOUS SOLUTION OF THE FOUR EQUATIONS:

$$g = 1 - f = \frac{2A}{5} \longrightarrow \qquad \boxed{\tau_A = 1.867}$$

TRANSMITTANCE, ABSORPTION, TRANSFER AND GREENHOUSE FUNCTIONS

Linear trends in the flux absorption between 1948 and 2008, $A = 1 - e^{-\tau}$ NCEP/NCAR R1 Reanalysis data from http://www.cdc.noaa.gov

Global mean IR absorption does not follow the CO₂ increase

Greenhouse effect and the 21.6 % increase of CO_2 in the last 61 years are unrelated Atmospheric H₂O does but CO₂ does not correlate with the IR optical depth

NOAA NCEP/NCAR R1 Trendline correlation coefficient summary

ATMOSPHERIC CO₂ INCREASE CAN NOT BE THE REASON OF GLOBAL WARMING

Time period	Centre	Years	Altitude	Temperature	H ₂ O	CO ₂	Tau
1948-2008	1978	61	0.7931	0.8183	-0.2841	0.9839	0.06488
1959-2008	1983.5	50	0.8059	0.8349	0.04499	0.9937	0.2976
1948-1997	1972.5	50	0.6621	0.6625	-0.4843	0.9827	-0.2284
1973-2008	1990.5	36	0.6947	0.7987	0.1148	0.9974	0.3491
1948-1972	1960	25 ·	-0.005748	3 0.1731	-0.5907	0.983	-0.4184
1977-2008	1992.5	32	0.58	0.7424	0.03992	0.9973	0.267
1948-1976	1962	29	0.001769	0.0584	-0.6048	0.9804	-0.4396

IR optical depth has no correlation with time. The strong CO₂ signal in any time series is not present in the in the IR optical depth data.

GREENHOUSE THEORY:

Atmosphere must have a unique global average IR optical thickness which is consistent with all the observed empirical facts and the associated theoretical relationships.

Theoretical IR optical thickness estimates

IR optical thicknesses were computed from observations using first principles. No assumptions, arbitrary constants, GCMs, and feedbacks are involved.

 (\mathbf{i})

According to the simple-minded or 'classic' view of the greenhouse effect the global average greenhouse temperature change may be estimated by the direct application of the Beer-Lambert law moderated by local or regional scale weather phenomena (R. Pierrehumbert, A. Lacis, R. Spencer, R. Lindzen, A. P. Smith, H. deBruin, J. Abraham et al., J. Hansen et al.,and many others)*. This is not true.

The greenhouse effect is a global scale radiative phenomenon and can not be discussed without the explicit quantitative understanding of the global characteristics of the IR atmospheric absorption and its governing physical principles. The dynamics of the greenhouse effect depend on the dynamics of the absorbed solar radiation and the space-time distribution of the atmospheric humidity. The global distribution of the IR optical thickness is fundamentally stochastic. The instantaneous effective values are governed by the turbulent mixing of H_2O in the air and the global (meridional) redistribution of the thermal energy resulted from the general (atmospheric and oceanic) circulation.

Extropy rule: $\tau^{e} = OLR / (S_{11} - 4 S_{T}) = f / (1 - 4 T_{\Delta})$

CC

*R. Pierrehumbert, Physics Today, Jan. 2011; A. Lacis et al., Science, 330,2010; R. Lindzen, BAMS, March 2001; Spencer et al., GRL, 34, August 2007; A. P. Smith, AOPhysics, February, 2008; H. deBruin, Idojaras, 114,4,2010; J. Abraham et al., Letter: To the Members of the U.S. House of Represen-tatives and the U.S. Senate , January, 2011; J. Hansen et al., Science, 213, 1981