STOCHASTIC RESONANCE IN MULTISTABLE SYSTEMS

C. Nicolis

Evidence of climatic variability:

Preferred frequency

$$\frac{1}{\omega} \sim 10^5 \text{ years}$$

eccentricity of earth's orbit?

$$\epsilon \sin \omega t$$
 $\epsilon \sim 10^{-3}$

Need for a mechanism of amplification of weak signals in the presence of noise.

Classical setting of Stochastic Resonance

In absence of periodic forcing

$$C\frac{dT}{dt}$$
 = Incoming radiation - Outgoing radiation + Stochastic fluctuations

or equivalently,

$$C\frac{dT}{dt} = -\frac{\partial U}{\partial T} + F(T) \quad \text{(one variable system)} \tag{1}$$

- U: kinetic potential, possessing two wells (stable states) separated by a maximum (intermediate unstable state).
- Stochastic fluctuations : white noise

$$\langle F(t) \rangle = 0$$

 $\langle F(t)(t') \rangle = q^2 \delta(t - t')$

 \to Fokker Planck equation for the probability masses around the two stable states T_- (state 1) and T_+ (state 2).

Steady state solution expressed entirely in terms of \boldsymbol{U} :

$$P_s \sim \exp\left(-\frac{2}{q^2}U\right) \tag{2}$$

Phenomenological theory of Kramers : diffusion over a potential barrier (q^2 small)

Mapping the problem into a discrete process

state 1
$$\underset{k_{21}}{\rightleftharpoons}$$
 state 2 (3)

k's : "rate constants"

$$\frac{dP_1}{dt} = -k_{12}P_1 + k_{21}P_2 \quad \text{with} \quad P_1 + P_2 = 1$$
 (4)

$$k_{12}\sim {\rm e}^{-{2\over q^2}\Delta U}, \qquad \Delta U= \qquad U \ {\rm (unstable\ state)} \ -U \ {\rm (reference\ state)}$$
 potential barrier

Time scale of transitions between states 1 and 2

$$<\tau>\sim \frac{1}{k_{12}}$$
 long time scale of order 10⁵ years

Presence of a periodic forcing $\varepsilon\sin\omega t$

$$\begin{array}{ccc} \varepsilon \sim & 10^{-3} \\ \omega \sim & 10^{-5} \text{ years} \end{array} \right\} \text{eccentricity of earth}$$

Adiabatic approximation

$$\begin{split} P_{i}\left(t\right) &= P_{i}^{(o)} + \varepsilon R_{i} \sin\left(\omega t + \varphi\right) \qquad i = 1, 2 \\ R_{i} \; : \; \text{amplitude of response} \end{split}$$

Results

R_i appreciable if

 $P_1^{(0)} \sim P_2^{(0)} \sim 0.5 \text{ coexistance}$

▶ and $1/\omega \ge <\tau>$

$$\begin{array}{lcl} R_i & \sim & \frac{2\varepsilon}{q^2} \left[1 + (\tau \omega)^2 \right]^{-1/2} \\ \\ \varphi & = & -\arctan\left(\tau \omega\right) \end{array}$$

Typically $\varepsilon R \sim 20\%$

Preferred frequency ω

SR in multistable systems

(1 variable systems, additive periodic forcing of small amplitude)

Again, mapping into a discrete state process

state 1
$$\underset{k_{21}}{\rightleftarrows}$$
 state 2 $\underset{k_{32}}{\rightleftarrows}$ state 3 $\,\cdots\,$ state $n-1 \,\underset{k_{n,n-1}}{\rightleftarrows} \,$ state n

$$\frac{dP_i(t)}{dt} = \sum_{j=1}^{n} M_{ij}(t) P_j(t) \qquad i = 1, \dots n$$
 (5)

$$M = \begin{pmatrix} -k_{12} (t) & k_{21} (t) & 0 & \cdots & 0 \\ k_{12} & -(k_{21} + k_{23}) & k_{32} & \cdots & 0 \\ 0 & k_{23} & -(k_{32} + k_{34}) & & 0 \\ \vdots & & & & \vdots \\ \cdots & \cdots & \cdots & & -k_{n,n-1} \end{pmatrix}$$

Rate constants

$$\begin{array}{rcl} U & = & U^{(o)} - \varepsilon x \sin \omega t \\ k_{i,i\pm 1} \left(t \right) & = & k_{i,i\pm 1}^{(o)} \exp \left[\frac{2\varepsilon}{q^2} \Delta x \left(i, i \pm 1 \right) \sin \omega t \right] \\ k_{i,i\pm 1}^{(o)} & \sim & \exp \left[-\frac{2}{q^2} \Delta U_o \left(i, i \pm 1 \right) \right] \end{array}$$

Linear response

$$\begin{cases} k_{i,i\pm 1} = k_{i,i\pm 1}^{(o)} + \varepsilon \Delta_{i,i\pm 1} \sin \omega t \\ \Delta_{i,i\pm 1} = \frac{2}{q^2} k_{i,i\pm 1}^{(o)} \Delta x (i, i \pm 1) \end{cases}$$

$$\left\{ \begin{array}{ll} M\left(t\right) = & M_{0} + \varepsilon \Delta \sin \omega t \\ \mathbf{P}\left(t\right) = & \mathbf{P}_{0} + \varepsilon \delta \mathbf{P}\left(t\right) \\ \sum_{i=1}^{n} P_{i} = & 1 \\ \sum_{i=1}^{n} \delta P_{i} = & 0 \end{array} \right. \quad \blacktriangleright M_{0}, \ \Delta : \text{tridiagonal matrices} \\ \blacktriangleright \mathbf{P}_{0} : \text{invariant } P \text{ with } \varepsilon = 0 \\ \blacktriangleright \delta \mathbf{P} : \text{induced response}$$

$$\frac{d\delta \mathbf{P}(t)}{dt} = M_0 \delta \mathbf{P} + \varepsilon \sin \omega t \Delta \mathbf{P}_0$$

Long time solution : $\delta \mathbf{P}(t) = \varepsilon \left(\mathbf{A} \cos \omega t + \mathbf{B} \sin \omega t \right)$

$$\begin{cases} \delta P_i \left(t \right) = & R_i \sin \left(\omega t + \varphi_i \right) \\ R_i = & \varepsilon \left(A_i^2 + B_i^2 \right)^{1/2} \\ \varphi_i = & \arctan \left(\frac{A_i}{B_i} \right) \end{cases}$$

Let λ_k and u_k be eigenvalues and eigenvectors of M_0 .

Expanding $\Delta \mathbf{P}_0$ in the basis of \mathbf{u}_k

$$\Delta \mathbf{P}_0 = \sum_{k=1}^n \gamma_k \mathbf{u}_k$$

$$\begin{cases} \mathbf{A} = -\sum_{k=1}^{n} \frac{\omega}{\lambda_k^2 + \omega^2} \gamma_k \mathbf{u}_k \\ \mathbf{B} = -\sum_{k=1}^{n} \frac{\lambda_k}{\lambda_k^2 + \omega^2} \gamma_k \mathbf{u}_k \end{cases}$$

Simplification:

all k's \sim identical (one of the prerequisites of classical SR)

$$k_{12}=k_{21}=\cdots k_0$$

$$M_0 = k_0 \begin{pmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & -2 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & & \cdots & 0 & 0 \\ \vdots & & \ddots & & \ddots & \vdots \\ \cdots & \cdots & \cdots & & 1 & -1 \end{pmatrix}$$

$$\lambda_k = -2k_0 \left(1 - \cos \frac{(k-1)\pi}{n} \right) \qquad k = 1, \dots n$$

$$u_1^i = 1$$

$$u_k^i = \cos \left[\frac{(k-1)(2i-1)\pi}{2n} \right] \qquad i = 1, \dots n \quad k = 2, \dots n$$

Toy model

$$\begin{array}{ll} U_0\left(x\right) = -\cos x & 0 \leq x \leq 2\pi n \\ \pi, 3\pi, 5\pi, \cdots & \text{stable states} \\ 2\pi, 4\pi, 6\pi, \cdots & \text{unstable states} \end{array}$$

$$A_{i} = \frac{1}{N^{2}} \frac{4\pi k_{0}}{n} \frac{2}{q^{2}} \sum_{k \text{ even}} \cos \frac{(k-1)\pi}{2n} \cos \frac{(2i-1)(k-1)\pi}{2n} \frac{\omega}{\lambda_{k}^{2} + \omega^{2}}$$

$$B_{i} = \frac{1}{N^{2}} \frac{4\pi k_{0}}{n} \frac{2}{q^{2}} \sum_{k \text{ even}} \cos \frac{(k-1)\pi}{2n} \cos \frac{(2i-1)(k-1)\pi}{2n} \frac{\lambda_{k}}{\lambda_{k}^{2} + \omega^{2}}$$

$$N : \text{norm of } \mathbf{u}_{k}$$

$$R_{i} = \varepsilon \left(A_{i}^{2} + B_{i}^{2}\right)^{1/2}$$

$$\varphi_{i} = \arctan \frac{A_{i}}{B_{i}}$$

Optimal response near boundaries

Response maximized for some n depending on ω/k_0

Is there an optimal q_{opt}^2 ?

 $\mathsf{example}: n = 6$

optimal q^2 increases with n

$$R_{1} = \frac{2\varepsilon\pi}{3q^{2}} \left\{ \frac{(\omega/k_{0})^{4} + 15(\omega/k_{0})^{2} + 25}{\left[(\omega/k_{0})^{4} + 14(\omega/k_{0})^{2} + 1\right] \left[(\omega/k_{0})^{2} + 4\right]} \right\}^{1/2}$$

$$\omega/k_{0} \equiv \omega\tau$$

Conclusions

- Extension of classical SR for an arbitrary number of simultaneously stable states for systems involving one variable
- Amplitude and phase of response of a stable state have been determined as a function of its location
- ightharpoonup Existence of an optimal q^2
- Optimal number of intermediate stable states for which response is maximized

Extension of this work:

- Multivariate systems
- non potential systems
- ▶ more complex communication geometries of stable states

