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Evidence of climatic variability :

Preferred frequency

1
= ~10° years
w

Ice volume

eccentricity of earth’s orbit ?

esinwt e~1073
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Need for a mechanism of amplification of weak signals in the presence of noise.
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Classical setting of Stochastic Resonance

Classical setting of Stochastic Resonance

In absence of periodic forcing

dT
cZ= =
dt

Outgoing

Energy

T,

Incoming radiation — Outgoing radiation 4 Stochastic fluctuations

or equivalently,
(1)

(one variable system)

dT ou
C—=—-——+F(T

dt oT (1)
» U : kinetic potential, possessing two wells (stable states)

separated by a maximum (intermediate unstable state).

» Stochastic fluctuations : white noise

<F(@t)> =
<F(t) () >

— Fokker Planck equation for the probability masses around
the two stable states T_ (state 1) and Ty (state 2).

0
5 (t—t')

Steady state solution expressed entirely in terms of U :
2
Ps ~ exp (——U)
¢
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Classical setting of Stochastic Resonance

Phenomenological theory of Kramers : diffusion over a potential barrier (g2 small)

Mapping the problem into a discrete process

k12
state 1 = state 2 3)
k21
k's :"rate constants”
dP;
d_tl = —ki12P1 + ko1 P2 with P+P=1 (4)
-ZAU
kig~e a , AU = U (unstable state) — U (reference state)

potential barrier

Time scale of transitions between states 1 and 2

1
< T >~ o long time scale of order 10° years
12
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Classical setting of Stochastic Resonance

Presence of a periodic forcing e sin wt

e~ 1073
10-5 eccentricity of earth
w ~ years

Adiabatic approximation

P (t) = Pi(O) + eR; sin (wt + ) i=1,2

R; : amplitude of response
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Results

R; appreciable if

> Pl(o) ~ P2(O) ~ 0.5 COEXISTANCE

u P

State 1 State 2 / \ / \

T TT T T

» and 1/w >< 7>

2 —1/2
Ry ~ —Z [1 + (Tw)2]
q
¢ = —arctan(Tw)
Typically eR ~ 20% Preferred frequency w
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SR in multistable systems

(1 variable systems, additive periodic forcing of small amplitude)

Again, mapping into a discrete state process

k12 k23 knfl,n
state 1 = state 2 = state 3 --- state n —1 & state n
o k32 kn,nfl
aP;(t) _ < |
;t =D Mi; (1) P (t) i=1, - n )
Jj=1
—k12 (1) ka1 () 0 o o
K12 - (k21 + k23) k32 o 0
M = 0 ko3 — (k32 + k34) 0
_kn,nfl
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Rate constants

U = U —exsinwt
o 2e . .
ki1 (t) = k”):tl exp |:q—2A:t (4,5£1) smwt:|
o 2 .
kz(z):tl ~  exp [—?AUD (i, £ 1)}
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Linear response

kiit1 = k'EOz)j:l + €A i+1sinwt
Ajit1 = e EolilAw (i,i+£1)

M (t) = Mo+ eAsinwt
P ()= Po + 0P (1) > My, A : tridiagonal matrices
n

ZPi _ 1 » Pg : invariant P with e =0
i= > 0P : induced response

n

> 6P = 0

i=1
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8P (t)
dt

Long time solution : P (¢) = ¢ (A cos wt + B sinwt)

dP; (1)
R;

Ps

Let A\r and uy be eigenvalues and
eigenvectors of M.
Expanding APy in the basis of uy

n
APy = Y ypuy
k=1

= MydP + esin wtAPg

R; sin (wt + ;)

(42 82)

arctan (

1/2

5)
B;
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Simplification :

all k's ~ identical (one of the prerequisites of classical SR)

ki2 = ko1 =---ko
—1 1 0 0 0
1 -2 1 0 0
Mo = ko 0 0
1 -1
k—1
A = —2k0(1—cosg) k=1,---n
n
wio= 1
: k—1)(2¢i—1
up, = cos[()é—z)ﬂ-} i=1,---n k=2,--n
n
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Toy model

Toy model

Up (x) = —cosz 0<z<2mn
7, 3w, 5w, - - stable states
2w, 4, 67, - - - unstable states

e 2D (k=17 w

1 4wk k—1)m
= 2Zcos(

2n A2 4+ w?

(k-Dr @i-1kE-Dr X

2
N n q k even
1 4drkg
B, = — E cos
2
N n q k even 2n
N norm of ug

Ry = ¢(A2+B2)'?

A;
©Y; = arctan —
i
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Optimal response near boundaries Response maximized for some n depending on w/kg
. 1
Ryja] s
" ok =001 3
ok, .
2¢e Ax 05 N
q?2 R ’

Is there an optimal 2, 7

example : n =6

2em (w/ko)* + 15 (w/ko)? + 25
R = 3¢2 [( 4 2 2
w/ko)d + 14 (w/ko)? + 1] [(w/ko) +4]
w/ko = wT

0.001 0002
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Conclusions

Conclusions

» Extension of classical SR for an arbitrary number of simultaneously stable states for systems
involving one variable

» Amplitude and phase of response of a stable state have been determined as a function of its
location

» Existence of an optimal ¢2

» Optimal number of intermediate stable states for which response is maximized

Extension of this work :
» Multivariate systems
» non potential systems

» more complex communication geometries of stable states
1
2 == 3
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