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Evidence of climatic variability :

Time (103 yrs B.P.)
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Preferred frequency

1

ω
∼ 105 years

eccentricity of earth’s orbit ?

ε sinωt ε ∼ 10−3

Need for a mechanism of amplification of weak signals in the presence of noise.
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Classical setting of Stochastic Resonance

Classical setting of Stochastic Resonance

In absence of periodic forcing

C
dT

dt
= Incoming radiation−Outgoing radiation + Stochastic fluctuations

or equivalently,

C
dT

dt
= −

∂U

∂T
+ F (T ) (one variable system) (1)

! U : kinetic potential, possessing two wells (stable states)
separated by a maximum (intermediate unstable state).

! Stochastic fluctuations : white noise

< F (t) > = 0

< F (t)
(

t′
)

> = q2δ
(

t− t′
)

→ Fokker Planck equation for the probability masses around
the two stable states T− (state 1) and T+ (state 2).

Steady state solution expressed entirely in terms of U :

Ps ∼ exp

(

−
2

q2
U

)

(2)
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Classical setting of Stochastic Resonance

Phenomenological theory of Kramers : diffusion over a potential barrier (q2 small)

Mapping the problem into a discrete process

state 1
k12

!
k21

state 2 (3)

k’s :“rate constants”

dP1

dt
= −k12P1 + k21P2 with P1 + P2 = 1 (4)

k12 ∼ e
− 2

q2
∆U

, ∆U = U (unstable state) − U (reference state)

potential barrier

Time scale of transitions between states 1 and 2

< τ >∼
1

k12
long time scale of order 105 years
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Classical setting of Stochastic Resonance





Presence of a periodic forcing ε sinωt

ε ∼ 10−3

ω ∼ 10−5 years

}

eccentricity of earth

Adiabatic approximation

Pi (t) = P (o)
i + εRi sin (ωt+ ϕ) i = 1, 2

Ri : amplitude of response
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Results

Results

Ri appreciable if

! P
(0)
1 ∼ P

(0)
2 ∼ 0.5 coexistance











 








! and 1/ω ≥< τ >

Ri ∼
2ε

q2

[

1 + (τω)2
]−1/2

ϕ = − arctan (τω)

Typically εR ∼ 20% Preferred frequency ω

C. Nicolis () Stochastic Resonance in multistable systems 6 / 14



Results

SR in multistable systems

(1 variable systems, additive periodic forcing of small amplitude)

Again, mapping into a discrete state process

state 1
k12

!
k21

state 2
k23

!
k32

state 3 · · · state n− 1
kn−1,n

!
kn,n−1

state n

dPi (t)

dt
=

n
∑

j=1

Mij (t)Pj (t) i = 1, · · · n (5)

M =















−k12 (t) k21 (t) 0 · · · 0
k12 − (k21 + k23) k32 · · · 0
0 k23 − (k32 + k34) 0
...

...
· · · · · · · · · −kn,n−1
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Results

Rate constants

U = U (o) − εx sinωt

ki,i±1 (t) = k
(o)
i,i±1 exp

[

2ε

q2
∆x (i, i± 1) sinωt

]

k(o)i,i±1 ∼ exp

[

−
2

q2
∆Uo (i, i± 1)

]
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Results

Linear response











ki,i±1 = k
(o)
i,i±1 + ε∆i,i±1 sinωt

∆i,i±1 =
2

q2
k
(o)
i,i±1∆x (i, i± 1)















































M (t) = M0 + ε∆ sinωt

P (t) = P0 + εδP (t)
n
∑

i=1

Pi = 1

n
∑

i=1

δPi = 0

! M0, ∆ : tridiagonal matrices

! P0 : invariant P with ε = 0

! δP : induced response

C. Nicolis () Stochastic Resonance in multistable systems 9 / 14



Results

dδP (t)

dt
= M0δP + ε sinωt∆P0

Long time solution : δP (t) = ε (A cosωt+B sinωt)























δPi (t) = Ri sin (ωt+ ϕi)

Ri = ε
(

A2
i +B2

i

)1/2

ϕi = arctan

(

Ai

Bi

)

Let λk and uk be eigenvalues and
eigenvectors of M0.
Expanding ∆P0 in the basis of uk

∆P0 =
n
∑

k=1

γkuk























A = −

n
∑

k=1

ω

λ2
k + ω2

γkuk

B = −

n
∑

k=1

λk

λ2
k + ω2

γkuk
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Results

Simplification :

all k’s ∼ identical (one of the prerequisites of classical SR)

k12 = k21 = · · · k0

M0 = k0



















−1 1 0 · · · 0 0
1 −2 1 · · · 0 0
...

. . . · · · 0 0
...

. . . · · ·
...

· · · · · · · · · 1 −1



















λk = −2k0

(

1− cos
(k − 1)π

n

)

k = 1, · · ·n

ui
1 = 1

ui
k = cos

[

(k − 1) (2i− 1)π

2n

]

i = 1, · · ·n k = 2, · · ·n
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Toy model

Toy model

U0 (x) = − cos x 0 ≤ x ≤ 2πn

π, 3π, 5π, · · · stable states

2π, 4π, 6π, · · · unstable states

Ai =
1

N2

4πk0
n

2

q2

∑

k even

cos
(k − 1)π

2n
cos

(2i− 1) (k − 1) π

2n

ω

λ2
k + ω2

Bi =
1

N2

4πk0
n

2

q2

∑

k even

cos
(k − 1)π

2n
cos

(2i− 1) (k − 1) π

2n

λk

λ2
k + ω2

N : norm of uk

Ri = ε
(

A2
i + B2

i

)1/2

ϕi = arctan
Ai

Bi
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Toy model

α = 2ε∆x
q2

Optimal response near boundaries
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Response maximized for some n depending on ω/k0
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Is there an optimal q2opt ?

example : n = 6

R1 =
2επ

3q2







(ω/k0)
4 + 15 (ω/k0)

2 + 25
[

(ω/k0)
4 + 14 (ω/k0)

2 + 1
] [

(ω/k0)
2 + 4

]







1/2

ω/k0 ≡ ωτ

optimal q2 increases with n
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Conclusions

Conclusions

! Extension of classical SR for an arbitrary number of simultaneously stable states for systems
involving one variable

! Amplitude and phase of response of a stable state have been determined as a function of its
location

! Existence of an optimal q2

! Optimal number of intermediate stable states for which response is maximized

Extension of this work :

! Multivariate systems

! non potential systems

! more complex communication geometries of stable states

1

2 3
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