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Abstract 
Recent observations and investigations emphasize the cru-
cial role of ice-shelf fracture mechanics in the discussion on 
the stability of the polar ice sheets and related uncertainties 
in the prediction of the rate of eustatic sea level rise. We ac-
count for fracture mechanics occurring in ice shelves and 
along its boundaries in the large-scale prognostic Potsdam 
Parallel Ice Sheet Model (PISM-PIK 1,2) by introducing a two-
dimensional field variable. Fractures can be created and 
healed with respect to the local strain rate pattern and exist-
ing fractures can be advected with the flow downstream. In 
addition to the localization of potential fracture zones also ob-
served longitudinal surface structures can be explained. Cre-
vasses and those band structures are observed to influence 
the material properties and hence the overall ice shelf dy-
namics. The memory of past deterioration links the dynamics 
at the front with those in the inner part of the ice shelf (even 
grounding line processes) in a more realistic way and gives 
rise to a fracture based calving parameterization at the ice 
shelf front.

First-order strain-rate based calving law
Ice shelves spread towards the ocean and experience com-
pression across the main flow direction when confined in em-
bayments (denoted by green and red arrows in Fig.1). 

Fig.1: Schematic of confined ice shelf spreading towards ocean. Arrows de-
note expansion and compression along and across the main flow direction.

Beyond the confinement ice shelves can spread also side-
wards and crevasse propagation and rift opening is observed 
to occur both parallel and perpendicular to the main flow 
direction. Tabular icebergs get detached from the ice shelf 
along intersecting rifts, which is called calving.

Spreading or compression is prescribed by strain rates de-
fined as the symmetric part of the gradient of the vertically in-
tegrated velocities in the ice

A first-order kinematic relation between a temporally-aver-
aged horizontal calving rate, C, and the rotationally invariant 
determinant of the strain rate or its eigenvalues,     and     , at 
the terminus is given by

The proportionality constant, K, comprises all material prop-
erties of the ice at the calving front.3
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Fig.2: Minor strain rate eigenvalue,       , derived from (a) a diagnostic model  
in Shallow Shelf Approximation (SSA) and from (b) observed surface veloci-
ties (I. Joughin) reveal a transition from compressive to extensive flow in 
the front region of Filchner-Rønne Ice Shelf, which can be associated with a 
stabilizing arch (Doake et al., 1996).

Fracture density field
Crevasses are mostly initiated in regions of strong side shear 
or close to the grounding line. The fractured ice is transported 
downstream through regions, where the strain rate regime may 
allow for propagation or closure of existing fractures. We de-
fine a measure for the density of abundant fractures as 
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and let it advect with the ice.4 Contributions to the fracture den-
sity field when a certain critical value for the major principal 
strain rate component is exceeded, can be defined as (see Pra-
long & Funk 2005, with constant B)

Fig.3: Steady state fracture density field for Filchner-Rønne with constant 
boundary condition. The location of redish areas agree well with overlaid 
observed bands of surface features (Hulbe et al., 2010).

Calving events are more likely to occur when the ice at the 
front is highly fractured. With the help of the fracture den-
sity field we find a calving relation at the front as delayed re-
sponse to fracture processes occurring further upstream. 
Hence, we can define a fracture-enhanced calving rate as

Observed fracture bands in ice shelves act as zones of weak 
ice rheology and partly detach adjacent ice shelf areas. The 
fracture density field can be used to account for these affects 
to simulate more realistic velocity distributions and gain pos-
sibly a better understanding of catastrophic calving events.

fs := B · (1− φ) · (ε̇+ − ε̇
cr
) if ε̇+ > ε̇

cr
(1)

φ ε [0, 1] (2)

ε̇
cr

= 1.6 · 10−10 s−1 (3)

B = 2.0 (4)

C2 := K2(φ) · det(ε̇) (5)

C1 := K1 · det(ε̇) = K1 · ε̇+ · ε̇− if ε̇± > 0 (6)

ε̇ = ε̇i,j :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(7)

1

fs := B · (1− φ) · (ε̇+ − ε̇
cr
) if ε̇+ > ε̇

cr
(1)

φ ε [0, 1] (2)

ε̇
cr

= 1.6 · 10−10 s−1 (3)

B = 2.0 (4)

C2 := K2(φ) · det(ε̇) (5)

C1 := K1 · det(ε̇) = K1 · ε̇+ · ε̇− if ε̇± > 0 (6)

ε̇ = ε̇i,j :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(7)

1

fs := B · (1− φ) · (ε̇+ − ε̇
cr
) if ε̇+ > ε̇

cr
(1)

φ ε [0, 1] (2)

ε̇
cr

= 1.6 · 10−10 s−1 (3)

B = 2.0 (4)

C2 := K2(φ) · det(ε̇) (5)

C1 := K1 · det(ε̇) = K1 · ε̇+ · ε̇− if ε̇± > 0 (6)

ε̇ = ε̇i,j :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(7)

1

fs := B · (1− φ) · (ε̇+ − ε̇
cr
) if ε̇+ > ε̇

cr
(1)

φ ε [0, 1] (2)

ε̇
cr

= 1.6 · 10−10 s−1 (3)

B = 2.0 (4)

C2 := K2(φ) · det(ε̇) (5)

C1 := K1 · det(ε̇) = K1 · ε̇+ · ε̇− if ε̇± > 0 (6)

ε̇ = ε̇i,j :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(7)

1

fs := B · (1− φ) · (ε̇+ − ε̇
cr
) if ε̇+ > ε̇

cr
(1)

φ ε [0, 1] (2)

ε̇
cr

= 1.6 · 10−10 s−1 (3)

B = 2.0 (4)

C2 := K2(φ) · det(ε̇) (5)

C1 := K1 · det(ε̇) = K1 · ε̇+ · ε̇− if ε̇± > 0 (6)

ε̇ = ε̇i,j :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(7)

1

fs := B · (1− φ) · (ε̇+ − ε̇
cr
) if ε̇+ > ε̇

cr
(1)

φ ε [0, 1] (2)

ε̇
cr

= 1.6 · 10−10 s−1 (3)

B = 2.0 (4)

C2 := K2(φ) · det(ε̇) (5)

C1 := K1 · det(ε̇) = K1 · ε̇+ · ε̇− if ε̇± > 0 (6)

ε̇ = ε̇i,j :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(7)

1

fs := B · (1− φ) · (ε̇+ − ε̇
cr
) if ε̇+ > ε̇

cr
(1)

φ ε [0, 1] (2)

ε̇
cr

= 1.6 · 10−10 s−1 (3)

B = 2.0 (4)

C2 := K2(φ) · det(ε̇) (5)

C1 := K1 · det(ε̇) = K1 · ε̇+ · ε̇− if ε̇± > 0 (6)

ε̇ = ε̇i,j :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(7)

1


