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I F‘ ' Is enhanced heat and tracer transfer by intermittent porous flow an important process in deep geothermal systems?

PROCESSES IN ENHANCED GEOTHERMAL SYSTEMS INTERMITTENT POROUS FLOW: SOME MORE EXPLANATIONS
PRELIMINARY RESULTS
In enhanced or engineered geothermal systems (EGS) a fluid is pumped into a fractured reservoir Increase of fluid pressure leads to (plastic opening of pore space. Dissolution and precipitation of minerals under
through an injection well and is extracted again in a production well (Fig. 1). During this process, the stress leads to effectively viscous compaction and closure of pore space and fractures (Fig. 5 and 6). These Porosity waves are predicted to constitute an important fluid focusing and transport mechanism. They create transient or dy-
fluid interacts with the rock and exchanges heat and in many cases mass (by dissolution and re- processes, combining reactive fluid flow through a porous rock with dynamically changing porosity and perme- namic permeability in the reservoir and may allow for the rapid and focused transport of fluids, heat and mass in and out of the
orecipitation of minerals; Fig. 2). In addition, fluid flow through pores and fractures alters the stress ability can be modelled using the concept of porosity waves (Connolly & Podladchikov, 2007; Fig. 7). area close to the well without invoking the existence of an additional connected network of open fractures (Fig. 8).
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