Joint inversion of gravity data together with Pg traveltimes

from shots and $\mathrm{Pg} / \mathrm{Sg}$ onsets from earthquakes in the Western Bohemia/Vogtland swarm region

Bohuslav Růžek
Institute of Geophysics, Prague, Czech Republic
b.ruzek@ig.cas.cz

EGU General Assembly, Vienna, 04-08 April 2011

Western Bohemia/Vogtland region is known for the occurrence of

 seismic swarms,
but till now no commonly accepted 3D model is available ...

Geological building

Foci localization

Foci mechanisms
gravity data available
Understanding seismograms

Methodology
$\rightarrow \quad$???

Contents

- Data sets available
- Methodology
- Test
- Indicative result

N-
- Bouger gravity map
- Swarm earthquakes

N- -
- Bouger gravity map
- Controlled explosions

Globe \leftrightarrow rectangle Lambert projection

$$
\left(v_{p}, v_{s}, \rho\right)
$$

$$
\begin{aligned}
& d x=d y=d z=2 k m \\
& n x=48 \\
& n y=54 \\
& n z=17 \\
& 44064 \text { cells }
\end{aligned}
$$

Data space
 2821 rays from explosions (P) 6405 rays from earthquakes (P)
 6716 rays from earthquakes (S)
 1371 gravity measurements
 $\mathrm{n}=17323$

```
Model space
732 earthquake localizations (x,y,z,T)
44064 x (v v, v v, , \rho)
m = 732*4 + 54000*3 = 135120
m}\leq\leq13512
```

Single inversion

$$
g(m)=d
$$

$$
m^{s o l}: g(m) \rightarrow d^{o b s}
$$

Joint inversion of $1^{\text {st }}$ kind

$$
\begin{gathered}
g_{1}(m)=d_{1} \\
g_{2}(m)=d_{2} \\
{\left[\begin{array}{l}
g_{1}(m) \\
g_{2}(m)
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]} \\
m^{\text {sol }}:\left[\begin{array}{l}
g_{1}(m) \\
g_{2}(m)
\end{array}\right] \rightarrow\left[\begin{array}{l}
d_{1}^{o b s} \\
d_{2}^{o b s}
\end{array}\right]
\end{gathered}
$$

Joint inversion of $2^{\text {nd }}$ kind

$$
\begin{gathered}
\boldsymbol{g}_{1}\left(\boldsymbol{m}_{1}\right)=\boldsymbol{d}_{\mathbf{1}} \\
\boldsymbol{g}_{2}\left(\boldsymbol{m}_{\mathbf{2}}\right)=\boldsymbol{d}_{\mathbf{2}} \\
{\left[\begin{array}{c}
\boldsymbol{g}_{\mathbf{1}}\left(\boldsymbol{m}_{1}\right) \\
\boldsymbol{g}_{2}\left(\boldsymbol{m}_{2}\right) \\
\boldsymbol{g}_{r}\left(\boldsymbol{m}_{1}, \boldsymbol{m}_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{d}_{\mathbf{1}} \\
\boldsymbol{d}_{\mathbf{2}} \\
\mathbf{0}
\end{array}\right]} \\
g_{r}\left(\boldsymbol{m}_{1}, \boldsymbol{m}_{2}\right): \rho=k_{1} * v_{p}+k_{2} \text { etc. }
\end{gathered}
$$

"Cross-gradient method"

$$
\begin{gathered}
\boldsymbol{m}_{\mathbf{1}} \rightarrow \rho(x, y, z) \\
\boldsymbol{m}_{\mathbf{2}} \rightarrow v_{p}(x, y, z) \\
\nabla(\rho) * \nabla\left(v_{p}\right)=\mathbf{0}
\end{gathered}
$$

- $\rho=\mathrm{const}$
- $v_{p}=$ const
- $\operatorname{grad}(\rho) \| \operatorname{grad}\left(v_{p}\right) \quad$ Collocated structures

Gallardo, L. A., and M. A. Meju, 2004. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints: Journal of Geophysical Research, 109, B03311, doi: 10.1029/2003JB002716.
Tryggvason, A., and N. Linde, 2006. Local earthquake (LE) tomography with joint inversion for P-and S-wave velocities using structural con-straints: Geophysical Research Letters, 33, L07303, doi: 10.1029/2005GL025485.
Fregoso E. and Gallardo L.A., 2009. Cross-gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics 74, No. 4, P. L31-L42, 10.1190/1.3119263.

Synthetic example $10 \times 10=100$ cells 90 P -measurements 90 S -measurements No constraints Regularization via SVD

Input patterns

Reconstruction

Synthetic example $10 \times 10=100$ cells 90 P -measurements 90 S-measurements
Cross-gradient constraints
P-slowness
S-slowness Regularization via SVD

$$
\pm 10 \% \text { anomalies }
$$

Input patterns

Reconstruction

Synthetic example $10 \times 10=100$ cells 90 P -measurements 90 S-measurements
Cross-gradient constraints Regularization via SVD

$$
\pm 10 \% \text { anomalies }
$$

Input patterns

Reconstruction

Including cross-gradient constraint helps to discover structurally similar objects

Horizontal cross-sections in a depth of 4 km

Horizontal cross-sections in a depth of 4 km

Horizontal cross-sections in a depth of 4 km

Horizontal cross-sections in a depth of 4 km

Horizontal cross-sections in a depth of 4 km

Joint inversion combining gravity and seismic measurements

- can be linked by cross-gradient constraint, then
- no a-priori relation between model subspaces is required;
- stable solutions to both methods are produced;
- results seem to be reasonable and
- resulting models will be offered for free testing via web.

> Thanks!

