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Adaptive solutions of Partial Differential Equations

• Gerris Flow Solver

gfs.sf.net

• Navier–Stokes, Euler, Saint-Venant

etc...

• Adaptive quad/octree discretisation

• Free Software (GPL)

• Parallel with dynamic load-balancing

• Popinet (2003, 2009), JCP



“The curse of dimensionality”

or is adaptive mesh refinement necessary?

• The universe has (at least) four dimensions

• Using regular Cartesian grids, solution costs scale like

C∆
−4

with C a constant and ∆ the spatial resolution in each dimension

• Just buy bigger computers! A 100-fold increase in computing power

will buy you a 4
√
100 ≈ 3-fold increase in resolution... (assuming C

does not increase)

• Can adaptive methods break the spell?



The Saint-Venant equations

• Godunov-type finite-volume scheme

• HLLC approximate Riemann solver

• Wetting/drying, hydrostatic equilibrium: scheme of Audusse et al

(2004)



2004 Indian ocean tsunami

Staggered fault displacement model (5 segments)



2004 Indian ocean tsunami

1 km ≤ Spatial resolution ≤ 150 km



Adaptivity

Truncation error of the wave height < 5 cm



Maximum wave height



Comparison with field data
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Effect of spatial resolution
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Average number of elements as a function of maximum resolution



Connection with fractal dimension

Classical example: the Sierpinski triangle

has a fractal (Minkowski–Bouligand or “box-counting” or “information”)

dimension of ≈ 1.6.

In other words, the cost of describing such an object using quadtrees

would scale as ∆−1.6 not ∆−2.



Evolution of the scaling exponent with time

Mandelbrot, How long is the coast of Britain?, Science, 1967
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Conclusions

• Accurate and fast solutions for multiscale Saint-Venant problems

• Adaptivity changes the scaling of computing costs: C∆−d, d is now

smaller than the number of dimensions

• This conclusion extends to a range of problems (not just

Saint-Venant)

• See also poster for the Tōhoku tsunami

Work in progress

• There is a close link between the physical scale-distribution of (fluid

dynamics) problems and the scaling of computing costs: this needs to

be explored to make the most of adaptive methods



Inundation at Tutuila, American Samoa, 2009

10 m ≤ Spatial resolution ≤ 82 km

Simulated domain ≈ (3000 km)2



Maximum runups on shoreline

Locations Model Field surveys

Aceh (N coast), Indonesia 8.25 10–16

Aceh (W coast), Indonesia 17.60 24–35

Galle, Sri Lanka 3.16 2–3

SE coast, Sri Lanka 5.60 5–10

Chennai, India 3.01 2–3

Nagappaattinam, India 3.20 2–3.5

Kamala Bch., Phuket, Thailand 5.95 4.5–5.3


