

Global Land Surface Hydrology Monitoring using Sentinel-1: Opportunities and Challenges

Wolfgang Wagner, Marcela Doubkova, Daniel Sabel, Annett Bartsch, Michael Hornacek, Jean-Pierre Klein, Stefan Schlaffer

Institute of Photogrammetry and Remote Sensing (I.P.F.)

Vienna University of Technology (TU Wien)

www.ipf.tuwien.ac.at

Need for Soil Moisture

 Soil moisture is needed by all GEO Social Benefit Areas and was ranked the second top priority parameter (behind precipitation) in a year 2010 GEO report on "Critical Earth Observation Priorities"

Soil Moisture Monitoring using Radars

- Scatterometers (25-50 km)
 - Near-real-time METOP ASCAT surface soil moisture product fully operational since 2008
 - Positive impact of ERS SCAT and ASCAT data has already been demonstrated in some application areas
 - NWP, hydrology, epidemiology, ...
 - Convergence with passive sensors (AMSR-E, SMOS, ...)
- SAR (10-100 m)
 - Most intensively investigated radar mode but progress limited due to the difficulties of modelling roughness and vegetation at this scale
- ScanSAR (0.1-1 km)
 - ENVISAT ASAR Wide Swath and Global Monitoring modes have serves as test bed for pre-operational demonstration
 - Validation and application developments are advancing well, but problems due to limited coverage and high noise

Merged Active-Passive Soil Moisture Time Series

Illinois Climate Record

SMOS & ASCAT Timeseries

Southwest Australia Latitude: -33.9897 ° Longitude: 146.516 °

GPI: 1821007

	ASCAT/ GLDAS	SMOS/ GLDAS	ASCAT/ SMOS
R (Pearson)	0.43	0.46	0.33
R (Spearman)	0.62	0.50	0.37
RMSE (m^3 m^-3)	0.024	0.025	0.045

SMOS & ASCAT Time Series

Argentina

Latitude: -36.581 ° Longitude: -60.895 °

GPI: 1939010

	ASCAT/ GLDAS	SMOS/ GLDAS	ASCAT/ SMOS
R (Pearson)	0.90	0.90	0.82
R (Spearman)	0.88	0.89	0.87
RMSE (m^3 m^-3)	0.020	0.020	0.078

Soil Moisture Monitoring using Radars

- Scatterometers (25-50 km)
 - Near-real-time METOP ASCAT surface soil moisture product fully operational since 2008
 - Positive impact of ERS SCAT and ASCAT data has already been demonstrated in some application areas
 - NWP, hydrology, epidemiology, ...
 - Convergence with passive sensors (AMSR-E, SMOS, ...)
- SAR (10-100 m)
 - Most intensively investigated radar mode but progress limited due to the difficulties of modelling roughness and vegetation at this scale
- ScanSAR (0.1-1 km)
 - ENVISAT ASAR Wide Swath and Global Monitoring modes have serves as test bed for pre-operational demonstration
 - Validation and application developments are advancing well, but problems due to limited coverage and high noise

ENVISAT ASAR Soil Moisture

Flood in Queensland, Australia, January 2017

Potential of Sentinel-1

- With two satellites and a fixed acquisition scenario (IWS mode in HH or VV polarisation over land) Sentinel-1 can overcome all shortcomings of ENVISAT ASAR mode!
 - Europe coverage within 4-6 days
 - Global coverage within 12 days
- Fully-automatic near-real-time land hydrology service
 - Soil moisture at 1 km
 - Freeze/thaw at 1km
 - Water bodies at 20-50 m
- Why soil moisture at 1 km?
 - Validity of change detection algorithm
 - Keep data volume within limits

True Monitoring Concept!

Implementation

 Some models are better than others, but essentially "all models are wrong" → Need for Level 2 model calibration strategy & close coupling between processor and reprocessing facility

Good Reasons for Getting Prepared

- The potential of Sentinel-1 to be used for global land hydrology monitoring is significant
 - Only NASA's Soil Moisture Active Passive (SMAP) mission offers a comparable spatio-temporal coverage
- But the Sentinel-1 data volume is unprecedented
 - Level 0 + Level 1
 - ~1 Terabyte each day
 - ~8 Petabyte for complete mission
 - For each Level 2/3 product the comparable data volume must be expected
 - For complete service several tens of Petabyte are needed
 - Reprocessing needs to be done on a regular basis with sufficient speed
- No processing facility exists yet in Europe to cope with this data volume and processing requirements
 - Does Moore's law still hold considering energy demand and costs?

