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“ … focused examination and testing of ocean model resolution must be a prime 
goal of ocean climate model development over the next decades. ” 

- Griffies [2000]

“ … models are imperfect tools. Furthermore, discussion and comprehension of 
the results from complex models depend on the results from idealized models.”

- Philander [2009]



Abstract

To lowest order,
the ratio of numerical 
to physical dispersion is
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Many popular ocean models second-order accurate, inducing numerical 
dispersion generated from odd-order terms in the truncation error.

Internal waves are (often) a dynamical balance between nonlinearity and 
nonhydrostasy (physical dispersion).

Numerical dispersion mimics physical dispersion due to nonhydrostasy. 

To ensure relative dominance of physical over numerical dispersive effects:

We derive this relationship for simple models (KdV equation), and show that 
it holds in a real ocean model (SUNTANS – Fringer et. al. 2006).



Ocean Modeling: Range of Scales

Navier-Stokes 
solvers

Hydrostatic 
ocean 
models

Nonhydrostatic 
ocean models

Nonhydrostatic models compute 
motions for which 

Horizontal scale ~ Vertical scale

This requires computationally 
expensive solution of a 3D 
elliptic equation.

Most ocean models are
traditionally hydrostatic.  

The hydrostatic approximation
is valid when

Horizontal scale >> Vertical scale

Figure: D. Chelton, OSU



SAR Image
Courtesy internalwaveatlas.com

Straight of Gibraltar South China Sea

Internal Waves

Internal waves are (often) a 
dynamical balance between: 

Nonlinearity    & Nonhydrostasy 
(physical dispersion)
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The KdV equation
When modeling solitary waves, the behavior of a fully nonhydrostatic 
ocean model can be well approximated with the KdV (Korteweg and de-

Vries, 1895) equation:

The well-known 
solution to the 
KdV equation is:    
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Unsteadiness
Nonlinear 
advection of
momentum

Linear baroclinic
pressure gradient

Ocean
Model:

KdV:

Nonhydrostatic
pressure 
gradient

( )2 4 2, , O δ ε δε+

Requires solution of 
3D elliptic equation



Comparison of KdV to the 
nonhydrostatic model SUNTANS

KdV model uses coefficients
that account for continuous
stratification (Liu et al. 
2004).

Since SUNTANS is well-
approximated by KdV, we 
can analyze the numerical 
properties of the KdV 
equation to quantify the 
dispersive error in more 
complex models.

SUNTANS initial condition
Isopycnal displacements



Numerical Discretization of KdV Eq.
•SUNTANS and many ocean models discretize the equations 
with second-order accuracy in time and space. 
(e.g. POM, Blumberg and Mellor, 1987; MICOM, Bleck et al., 1992; MOM, Pacanowski and Griffes, 1999).

•A second-order accurate discretization of the KdV equation 
using “leap-frog” (i.e. POM) is given by

2 3

3

31 0
2 6t x x

ξ ξ ε ξδξ∂ ∂ ∂⎛ ⎞+ − + =⎜ ⎟∂ ∂ ∂⎝ ⎠

1 1 2 1 1
2 1 1 21 1 2 2

3

31 0
2 2 2 6

n n n nn n n n
n i i i ii i i i
it x x

ξ ξ ξ ξξ ξ ξ ξ εδξ
+ −

+ + − −+ − − + −− −⎛ ⎞+ − + =⎜ ⎟Δ Δ Δ⎝ ⎠

•Taylor series expansions can be used to determine the 
truncation error, or modified equivalent PDE:
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The discrete KdV equation produces a modified equivalent PDE (Hirt 
1968) which introduces new terms due to discretization errors:
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The numerical discretization of the first-order derivative produces numerical 
dispersion. Errors in the nonlinear term are smaller by ~ a factor δ. 

Modified equivalent KdV equation

KdV:

Modified 
KdV:
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Scotti & Mitran (2008)



• “Nonhydrostatic” models possess both physical & 
numerical dispersion:

• “Hydrostatic” models possess only numerical 
dispersion:
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Numerical dispersion in hydrostatic 
and nonhydrostatic ocean modeling



Hydrostatic
model dispersion
(numerical):

Nonhydrostatic
model dispersion
(physical+numerical):

Hydrostatic vs. Nonhydrostatic  

1 / 4x hΔ =

1 1.005+Γ =

0.005Γ =

Ocean Model
(SUNTANS)

Numerical dispersion is 200 times smaller than physical dispersion.



Hydrostatic
model dispersion
(numerical):

Nonhydrostatic
model dispersion
(physical+numerical):
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Numerical dispersion is 5 times larger than physical dispersion.

Hydrostatic vs. Nonhydrostatic  Ocean Model
(SUNTANS)



Hydrostatic and 
nonhydrostatic models
produce the same
"numerical solitary-like 
waves" for large λ.

Hydrostatic models
produce sharp fronts
due to small numerical 
dispersion.

Nonhydrostatic models
converge to the correct
solitary wave for 
small λ.
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Hydrostatic vs. Nonhydrostatic SUNTANS 

Effects of 1/x hλ = Δ (grid resolution)



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

λ=Δ x*/ε

L si
m

/L
* 0

 

 

Hydrostatic Soliton Scaling (lowest order)
Nonhydrostatic Soliton Scaling (lowest order)
Hydrostatic KdV Model
Nonhydrostatic KdV Model
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Hydrostatic vs. Nonhydrostatic Modeled soliton widths

KdV equation
Ocean Model 
(SUNTANS)
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Conclusions
• To resolve nonhydrostatic effects in internal gravity waves, 

the grid lepticity must satisfy                                       .

• Large      leads to excessive numerical dispersion and 
hydrostatic and nonhydrostatic models produce the same 
(incorrect) results.  

• This analysis assumes second-order accuracy.  Third-order 
accurate models (in both time and space) would not 
produce (lowest order) numerical dispersion and provide 
more accurate results.

• This condition               may be a significant additional 

resolution requirement beyond the current-state-of-the art 

in ocean modeling of internal waves.
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