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“ ... focused examination and testing of ocean model resolution must be a prime
goal of ocean climate model development over the next decades.”
- Griffies [2000]

“ ... models are imperfect tools. Furthermore, discussion and comprehension of
the results from complex models depend on the results from idealized models.”
- Philander [2009]
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Abstract

Many popular ocean models second-order accurate, inducing numerical
dispersion generated from odd-order terms in the truncation error.

Internal waves are (often) a dynamical balance between nonlinearity and
nonhydrostasy (physical dispersion).

Numerical dispersion mimics physical dispersion due to nonhydrostasy.

To lowest order, K is typically an O(1) constant
the ratio of numerical A
to physical dispersion is 4 =2X s the grid leptic ratio, or lepticity
F . Kﬂz AX is the horizontal grid spacing
o h, is the upper layer (pycnocline) depth

We derive this relationship for simple models (KdV equation), and show that
it holds in a real ocean model (SUNTANS - Fringer et. al. 2006).

To ensure relative dominance of physical over numerical dispersive effects:
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Ocean Modeling: Range of Scales

Most ocean models are
traditionally hydrostatic.

The hydrostatic approximation
is valid when

Horizontal scale >> Vertical scale

Nonhydrostatic models compute
motions for which

Horizontal scale ~ Vertical scale
This requires computationally

expensive solution of a 3D
elliptic equation.



Internal Waves

Straight of Gibraltar South China Sea

Internal waves are (often) a a7
dynamical balance between: =47

Nonlinearity & Nonhydrostasy
(physical dispersion) .
SAR Image
Courtesy internalwaveatlas.com
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The KdV equation

When modeling solitary waves, the behavior of a fully nonhydrostatic
ocean model can be well approximated with the KdV (Korteweg and de-
Vries, 1895) equation:
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The well-known
solution to the

KdV equation is:
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Comparison of KdV to the

honhydrostatic model SUNTANS
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SUNTANS initial condition
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KdV model uses coefficients
that account for continuous
stratification (Liu et al. e
2004). By

Since SUNTANS is well-
approximated by KdV, we

can analyze the numerical & .

properties of the KdV
equation to quantify the
dispersive error in more
complex models.
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Numerical Discretization of KdV Eq.

- SUNTANS and many ocean models discretize the equations

with second-order accuracy in time and space.
(e.g. POM, Blumberg and Mellor, 1987; MICOM, Bleck et al., 1992; MOM, Pacanowski and Griffes, 1999).

- A second-order accurate discretization of the KdV equation
using “leap-frog” (i.e. POM) is given by
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- Taylor series expansions can be used to determine the
truncation error, or modified equivalent PDE:
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Modified equivalent KdV equation

The discrete KdV equation produces a modified equivalent PDE (Hirt
1968) which introduces new terms due to discretization errors:
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The numerical discretization of the first-order derivative produces numerical
dispersion. Errors in the nonlinear term are smaller by ~ a factor 6.

K is typically an O(1) constant
A E% Is the grid leptic ratio, or lepticity

AV (AxY
numerical dispersion X X
I'= P = K( j =K [E] = KA? Scotti & Mitran (2008)

physical dispersion &

AX is the horizontal grid spacing
h, is the upper layer (pycnocline) depth




Numerical dispersion in hydrostatic
and nonhydrostatic ocean modeling

“Nonhydrostatic” models possess both physical &
numerical dispersion:
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“Hydrostatic” models possess only numerical
dispersion:
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Hydrostatic vs. Nonhydrostatic Ocean Model
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Numerical dispersion is 200 times smaller than physical dispersion.



Hydrostatic vs. Nonhydrostatic Ocean Model

0 . l l . (SUNTANYS)
s
4 = | | | =007, AX —_ 8|’]1
7 Hydrostatic
-4 . . il model dispersion
(numerical):
Nonhydrostatic

model dispersion
(physical+numerical):

1+1'=6

Numerical dispersion is 5 times larger than physical dispersion.



Effects Of /1 AX/ h1 (grid resolution)

Hydrostatic and
nonhydrostatic models
produce the same
"numerical solitary-like
waves" for large .

<

Small A
Large

Hydrostatic models
produce sharp fronts
due to small numerical
dispersion.

Nonhydrostatic models
. . . converge to the correct
12 10 -8 -6 -4 -2 0 2 4 solitary wave for

small A.

Hydrostatic vs. Nonhydrostatic SUNTANS



Hydrostatic vs. Nonhydrostatic Modeled soliton widths

Ocean Model

KdV equation (SUNTANS)
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Conclusions

To resolve nonhydrostatic effects in internal gravity waves,
the grid lepticity must satisfy 4 = Ax/ h1 ~ O(O_l)

Large A leads to excessive numerical dispersion and
hydrostatic and nonhydrostatic models produce the same
(incorrect) results.

This analysis assumes second-order accuracy. Third-order
accurate models (in both time and space) would not
produce (lowest order) numerical dispersion and provide
more accurate results.

This condition Ax < h1 may be a significant additional
resolution requirement beyond the current-state-of-the art
in ocean modeling of internal waves.
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