

Boosting Scalability of OGC Standards on Massive Data Sets Through Database Technology

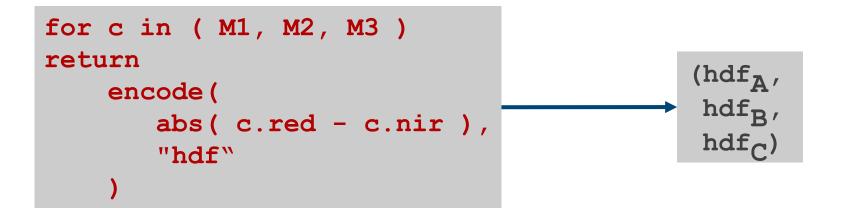
EGU 2011 Vienna, 2011-apr-05

Peter Baumann

Jacobs University Bremen | rasdaman GmbH

Baumann :: Scalability :: EGU 2011

Introduction


- Data providers are offering geo data since long
 - Usually simple ftp or similar
- In future: ad-hoc geospatial analytics
 - Disaster relief collaboration, science, ...
- This demo is about operational complexity using OGC standards
 - Specifically, on raster-type coverages
 - OGC Web Coverage Service (WCS) standard and Web Coverage Processing Service (WCPS) standard and EO-WCS (time permitting)

WCPS By Example

"From MODIS scenes M1, M2, and M3, the absolute of the difference between red and nir, in HDF-EOS"

WCPS By Example

"From MODIS scenes M1, M2, and M3, the absolute of the difference between red and nir, in HDF-EOS"

• ...but only those where nir exceeds 127 somewhere

```
for c in ( M1, M2, M3 )
where
    some( c.nir > 127 )
return
    encode
        abs( c.red - c.nir ),
        "hdf"
    )
```

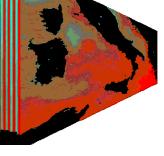

WCPS By Example

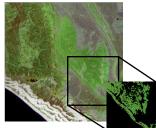
"From MODIS scenes M1, M2, and M3, the absolute of the difference between red and nir, in HDF-EOS"

BY

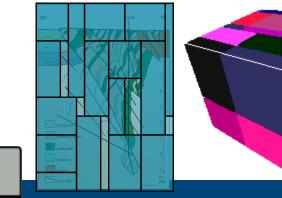
- ...but only those where nir exceeds 127 somewhere
- ...inside region R

```
for c in ( M1, M2, M3 ),
    r in ( R )
where
    some( c.nir > 127 and r )
return
    encode
        abs( c.red - c.nir ),
        "hdf"
    )
```



"Raster data manager" = C/S Array DBMS for massive n-D raster data


- storage & query optimization
- In operational use on dozen-TB objects
- rasql = declarative array query language
 - select img.green[x0:x1,y0:y1] > 130
 from LandsatArchive as img

BY

- n-D array \rightarrow set of n-D tiles
 - tiles stored inside (!) DBMS in BLOBs
 - arbitrary tiling (layout language)

http://www.eoxserver.org/doc/en/users/demonstration.html

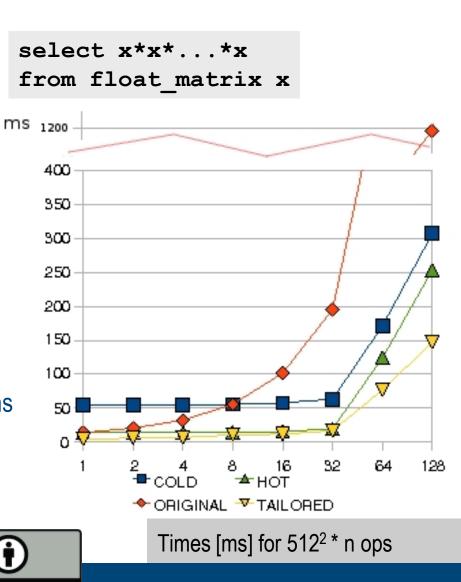
www.earthlook.org

rasdaman

È,

Demo

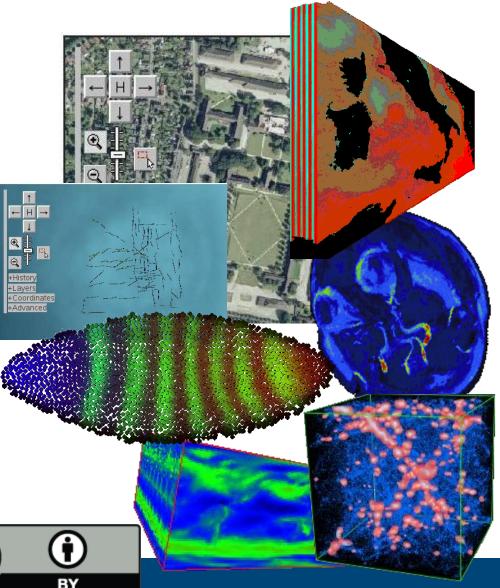
Query Optimization – Ex. 2


JACOBS UNIVER

Observation: interpreted mode slows down

- Approach:
 - cluster suitable operations
 - compile & dynamically bind
- Benefit:
 - Speed up complex, repeated operations

BY


- Variation:
- compile code for GPU
 [Jucovschi, Stancu-Mara]

Optimization Techniques & Application Domains Studied

JACOBS UNIVERSITY

- Adaptive tiling
- Adaptive compression
- Multi-dimensional indexing
- Distributed query processing
- Query rewriting
- Pre-aggregation
- Physical operator clustering
- Transparent tape integration
- Just-in-time compilation
- GPU processing
- Tile caching

Outlook: Research Directions V

- NASA considers using WCPS standard for ground/space interface
 - Satellite = ad-hoc analytics server
- EarthServer project: Scalable Earth Science Service Environment
 - 100 TB online analytics, incl. distributed fusion
 - 11 partners, ESA + NASA; start in Sep 2011
- Emerging research area: Array Databases
 - workshop last week in Uppsala:
 www.rasdaman.com/ArrayDatabases_Workshop
 - New issues like: imaging/database coupling

Baumann :: Scalability :: EGU 2011

Conclusion

Array Databases can give high-performance support on massive sets

Highly effective optimization techniques: adaptive tiling, query rewriting, JIT compilation, ...

- Still lots of research issues, but perspective of substantially improved analytics & collaboration support is clear
 - Both at acquisition time and for "long-tail science"
 - Extension from raster services to full coverage services
 - Server-side dynamic optimization helps!

