

Bayreuth Center of Ecology and Environmental Research

www.bayceer.de

EGU, April 05, 2011, HS 6.1

"Energy and matter exchange in the convective boundary layer above the Tibetan Plateau at Nam Co Lake"

Tobias Biermann¹, Wolfgang Babel¹, Tobias Gerken^{1,2}, Yingying Chen³, Yaoming Ma³, Kun Yang³, Hans-Friedrich Graf²,<u>Thomas Foken¹</u> & Rafael Eigenmann¹ and Degang Zhou³

¹University of Bayreuth, Department of Micrometeorology ²University of Cambridge, Centre for Atmospheric Science ³Chinese Academy of Sciences, Institute of Tibetan Plateau Research

Bayceer

Bayreuth Center of Ecology and Environmental Research

Content

- Flux measurements on Tibetan Plateau
- Validation of lake and land surface models on Tibetan Plateau
- Free Convection from the ground
- Modeling of the generation of convective clouds

Importance of Flux Measurements

- Low amount of data at high altitudes (high potential temperature, convective situations)
- Validation of model outputs
- Forcing parameters for the investigation of convective processes
- Investigation of important questions of the atmosphere – biosphere interaction

Field measurements of the University of Bayreuth in Tibet

Results of the Kema experiment will be shown on the 3rd iLEAPS conference in Sept. 2011, Garmisch-Partenkirchen

Nam Co 2009

In

- Turbulent flux measurements at land-lake interface
 - →Investigations into energy balance closure
 - →successful application of land surface and hydrodynamic model
 - → data for upscaling and investigation of mesoscale circulations

Kema 2010

- Joint *Kobresia* ecosystem expedition
- Flux measurements under grazed and ungrazed conditions

http://en.poehali.org/maps

UNIVERSITÄT BAYREUTH

Dept. of Micrometeorology

Th

Bayceer

Bayreuth Center of Ecology and Environmental Research

Flux measurements and footprints at Nam Co

 (\mathbf{i}) CC BY

www.bayceer.de

155

155

310

310

ceer

Bav

Daily cycle of energy fluxes – Energy balance closure

UNIVERSITÄT BAYREUTH

Feben (2008)

BY

CC

www.bayceer.de

ceer

Daily cycle of energy fluxes – Energy balance closure

$$Q_s^* \ge Q_G + Q_H + Q_E$$

Bav

Nam Co 2009 Fluxes above grass

UNIVERSITÄT BAYREUTH

Bayreuth Center of Ecology and Environmental Research

www.bayceer.de

Applied models Lake

- Hydrodynamic multilayer (HM) model by Foken (1986).
- Supplemented with a shallow water correction term by Panin et al. (2006)
- \rightarrow increased turbulent fluxes

$$\mathbf{Q}_{\mathsf{E},\mathsf{H}}^{\mathsf{L}} \stackrel{a}{=} \mathbf{Q}_{\mathsf{E},\mathsf{H}}^{\mathsf{O}} \stackrel{c}{\cdot} \left(1 \stackrel{a}{+} \frac{2h}{H} \right)$$

Land

- Surface Energy and Water Balance (SEWAB) by Mengelkamp et al. (1999), energy balance closed.
- Parameter estimation by in situ measurements, laboratory investigation of soil characteristics and literature values

Both models were forced with standard meteorological in-situ measurements.

Th

Bayreuth Center of Ecology and Environmental Research

Avaraged daily cycle of turbulent fluxes, Nam Co, June/July 2009

UNIVERSITÄT

BAYREUTH

 $\textcircled{}$

BY

CC

Dept. of Micrometeorology

Bayreuth Center of Ecology and Environmental Research

Bayceer

Comparison of measured and modeled fluxes

Land (Observation with EBC according to the Bowen ratio, Twine et al. 2000)

In

Bayreuth Center of Ecology and Environmental Research

Bayceer

 $\zeta < -1$

Generation of free convection from the ground

- Free convection: buoyancy forces > shear forces
- Stability parameter:
- Requirements:

- Uring wind direction change!

(Eigenmann et al., 2009)

 (\mathbf{i})

BY

CC

() BY Dept. of Micrometeorology

Bayreuth Center of Ecology and Environmental Research

Free convection near the ground on Tibetan Plateau

due to the reversal the land-lake circulation system in the morning
due to the adaption of circulation system to cloud cover periods during the whole daytime

Bayceer

Bayreuth Center of Ecology and Environmental Research

The ATHAM-Model

UNIVERSITÄT

BAYREUTH

(i)

BY

CC

- The cloud resolving Active Tracer High Resolution Atmospheric Model (ATHAM) developed by the University of Cambridge has the following features:
- 2D/3D stretched Cartesian grid
- Transport of passive and active tracer (atmospheric trace gases, water vapor, ice and water particles)
- Modules for turbulence, Cloud Microphysics (Kessler), LW and SW radiation.
- Very high resolutions in space and time possible (i.e. 100 m).
- Surface-model for interactive surfacefluxes: Hybrid (Friend & Kiang, 1995)

BayceeR Bayreuth Center of Ecolo

Bayreuth Center of Ecology and Environmental Research

Model results

- Development of a thermal lake breeze/mountain wind that develops through interaction of solar irradiation, turbulent fluxes and boundary layer clouds
- Investigation of feedbacks in system and importance for energy and moisture transport at Nam Co lake

Bayreuth Center of Ecology and Environmental Research

www.bayceer.de

Conclusions

- Turbulent energy fluxes can be measured and modeled with high accuracy also on high altitudes on Tibetan Plateau (except winter conditions, in preparation for publication)
- Strong convection events can be found even in surface fluxes.
- The generation of convective clouds can be modeled with high resolution models (grid size about 100 m)
- Upscaling of turbulent fluxes on pixel/grid size is possible with a combination of footprint and SVAT modeling (not shown, will be soon submitted for publication in HESS)

A good basis is given for calibration also of mesoscale models or remote sensing data. But therefore a good available data base is necessary.

In

Bayreuth Center of Ecology and Environmental Research

www.bayceer.de

Bayceer

Contribution to one of the most important places of climate change

