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4. Coupled energy and water transport model
Urban areas are home to more than half of the world’s population. Being humanity’s engine of creativity, wealth
production and economic growth, rapid urbanization has also emerged as the source of many adverse
environmental effects. Problems specific to urban environment include: urban heat island effects, significant
emission of greenhouse gases, production of pollutants, etc.
Physically-based urban canopy models (UCM) have proven to be a useful tool to study the surface transport of
energy in urban areas. We developed an offline urban parameterization scheme, coupling the transport of energy
and water inside urban canopies. It has been tested in detailed numerical/statistical analyses.
We have been deploying a sensor network consisting of various meteorological stations and sensing instruments
over the Princeton University campus, to capture the spatial and temporal variability of meteorological parameters
in complex built terrain, through distributed measurements.

2. A spatially-analytical scheme for surface temperature/soil heat flux
 Buildings are represented as a one-dimensional infinite urban street

canyon, similar to the “big-leaf” concept in NOAH land surface model.
 We developed EFM-UCM to include heterogeneous surface types for

the ground, walls, and roofs.
 A spatially-analytical algorithm for heat conduction to compute surface

temperatures and heat fluxes was implemented to replace the
conventional fully discrete model.

 The algorithm can be extended for reconstruction of soil surface heat
flux through flux plate measurement, without resorting to the
knowledge of soil temperature.
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 Each uncertain parameter is assigned a
PDF (normal or uniform) .

 Define a parameter sensitivity index
(PSI) by maximizing monitored outputs
and conditional sampling techniques.

 UCM is highly sensitive to urban
geometry and building parameters.

 UCM is relatively insensitive to thermal
parameters and weather conditions.
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1. Introduction
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3. Characterization of parameter uncertainties using Markov-Chain Monte Carlo (MCMC)

TR2

Ta Ta

TR1

Ta

HR Hcan

zT

zR

za

z

soil heat storage

rw

TW2

TG1 TG3

TW1

Tcan

TG2

h
GR,i

GW,i

Ti

zero-flux boundary

layer 1

2

...

k

k + 1

N

...

θ1

θ2

θk

θk+1

θN

precipitation evapotranspiration surface
runoff

infiltration

 Atmospheric forcing is obtained from
a standard eddy-covariance (EC)
station, while surface measurements
from a network of 11 Sensorscope®
stations are compared against model
predictions.
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 Physically-based water transport models are implemented for the
vegetated and engineered surfaces with water-holding capacity.

 Experimental data obtained from a distributed sensor network over
Princeton campus is used to drive and validate the numerical
models.
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