Fossil bivalves in the Rainbow area:

New insight into the diversity and evolution of chemosynthetic communities

F. Lartaud ${ }^{1,2^{*},}$ M. de Rafelis², C.T.S. Little ${ }^{3}$, G. Bayon ${ }^{4}$, B. Ildefonse ${ }^{5}$, J. Dyment ${ }^{6}$ and N. Le Bris ${ }^{1}$

[^0]Large variety of hydrothermal vent systems at slow spreading ridges:

Ultramafic-hosted hydrothermal vents:

High-temperature (e.g., Rainbow, Logatchev):

Gabbroic and ultramafic-hosted
High-temperature ($>300^{\circ} \mathrm{C}$), metal-rich and acidic vent fluids enriched in CO_{2}, but also in CH_{4} and H_{2} (derived from serpentinization).

Supports high-biomass of chemosynthetic communities: -bresilid shrimps and Bathymodiolus mussels at chimney complexes -vesicomyid clams in the sedimented diffuse flow areas (Anya's Garden at Logatchev).

Ultramafic-hosted hydrothermal vents:

Low-temperature (only one found = Lost City):

Ultramafic-dominated
Low-temperature ($<100^{\circ} \mathrm{C}$), metal-poor and high-pH vent fluids enriched in CH_{4} and H_{2} and comparatively lower in $\mathrm{H}_{2} \mathrm{~S}$.

Lacks of high-biomass chemosynthetic communities: -only 2 living specimens of Bathymodiolus aff. azoricus have been found

The MoMARDREAM 08 cruise focused on the Rainbow serpentinized seamount:

Dredges and/or ROV surveys to discover 2 fossil bivalve sites:

Clamstone

2.5 km east to Rainbow field, ~2000 m depth

Lartaud et al., 2010 (G3)

Ghost City
1.2 km north-east to Rainbow field, 2100 m depth

CLAMSTONE

Phreagena sp.
\downarrow

First occurrence of this genus on the MAR
Shallowest and northernmost vesicomyids on the MAR

With Anya's Garden, only proof of hydrothermal thyasirids, which are more common at cold seeps (e.g., T. vulcolutre from the Gulf of Cadiz).

Phreagena sp.: shells dissociated, partly burried in the sediment
${ }^{14} \mathrm{C}$ dating : ~25 kyr BP

\square
18 fields of dead vesicomyids over an area covering $300 \mathrm{~m} \times 100 \mathrm{~m}$.

Thyasira aff. southwardae:

3 shells in the dredge and only one additional patch identified during the ROV survey

GHOST CITY

Several pieces of carbonates were dredged with serpentinized peridotites,and some troctolites and gabbros:

Ferric oxyhydroxide black crust with solitary corals on the top

Carbonates white to ivory in colour, encrust mussel shells

(1) The carbonate matrix lacks of sulfide minerals
(2) Consists of varying proportions of:

- infilling pelagic calcitic and
aragonitic fossils
(1) The carbonate matrix lacks of sulfide minerals
(2) Consists of varying proportions of:
- infilling pelagic calcitic and aragonitic fossils
- authigenic carbonate cements which display layered texture with significant porosity

(1) The carbonate matrix lacks of sulfide minerals
(2) Consists of varying proportions of:
- infilling pelagic calcitic and aragonitic fossils
- authigenic carbonate cement which display layered texture with significant porosity...

... close similar to the anastomosing aragonite structures of Lost City carbonate chimneys

Fauna assemblage:

Dominated by Bathymodiolus aff. azoricus (4 shells / $10 \mathrm{~cm}^{3}$)

Two bivalves species from sedimented vent site (Clamstone)

Lurifax vitreus
Four additional taxa from typical MAR axial high-temperature vent communities

aff. ferrugivora

Protolira aff. thovaldssoni

Phymorhynchus sp.

CONCLUSIONS

> Ultramafic-hosted hydrothermal circulation
L
wide variety of different habitats, both on sediment cover and mineral hard substrates...
... including at small geographical and temporal scales.

CONCLUSIONS

$>$ Ultramafic-hosted hydrothermal circulation
\longrightarrow wide variety of different habitats, both on sediment cover and mineral hard substrates...
... including at small geographical and temporal scales.
$>$ Diverse chemosynthetic species, from both vent and seep genus, can form high-biomass assemblages (not only high-temperature ones).
> Chemosynthetic communities are more dependent to the chemical conditions in the habitat (electron donors) than the type of environment (cold seep vs.
hydrothermal vents).

CONCLUSIONS

$>$ Ultramafic-hosted hydrothermal circulation
\square wide variety of different habitats, both on sediment cover and mineral hard substrates...
... including at small geographical and temporal scales.
$>$ Diverse chemosynthetic species, from both vent and seep genus, can form high-biomass assemblages (not only high-temperature ones).
> Chemosynthetic communities are more dependent to the chemical conditions in the habitat (electron donors) than the type of environment (cold seep vs. hydrothermal vents).
> Serpentinite-hosted habitat might played a major role in the ability of chemosynthetic fauna to disperse over ocean basin scales.

ACKNOWLEDGMENTS:

Captain and crew of R/V L'Atalante
ROV Victor operation group
MoMARDREAM scientific party
N.C. Chen, J. Demange, Y. Fouquet, F. Gaill, P. Gente, V. Gressier, E. Hoisé, E. Krylova, A. Lethiers, L. Meistertzheim, G. Oliver, E. Rougemaille, R. Thibaud, E. Ponzevera, A. Waren.

This project was financially supported by:
CNRS-INSU, CNRS-INEE, IFREMER and IPGP
CHEMECO project
Fondation TOTAL and UPMC chair 'Extreme environment, biodiversity and global change'

REFERENCES:

Lartaud F., et al. (2010) Fossil clams from a serpentinite-hosted sedimented vent field near the active smoker complex Rainbow, MAR, $36^{\circ} 3^{\prime} \mathrm{N}$: Insig ht into the biogeography of vent fauna. Geochemistry Geophysics Geosystems 11.

Lartaud F., et al. (2011) Fossil evidence for serpentinization fluids fuelling chemosynthetic assemblages. PNAS 108, 7698-7703.

[^0]: ${ }^{1}$ LECOB, FRE CNRS 3350, Observatoire Océanologique de Banyuls, UPMC Univ Paris 06
 ${ }^{2}$ ISTeP, UMR 7193, UPMC Univ Paris 06
 ${ }^{3}$ School of Earth and Environment, Univiversity of Leeds
 ${ }^{4}$ Département Géosciences Marines, IFREMER
 ${ }^{5}$ Géosciences, UMR 5243, Université Montpellier 2
 ${ }^{6}$ Géosciences Marines, Institut de Physique du Globe de Paris

 * franck.lartaud@obs-banyuls.fr

