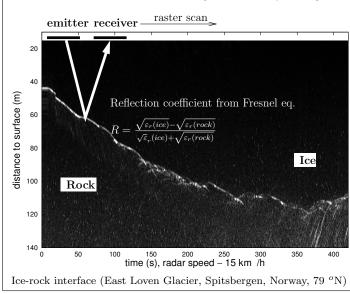
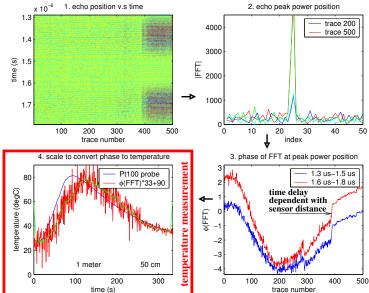
Surface acoustic wave delay lines as passive buried sensors

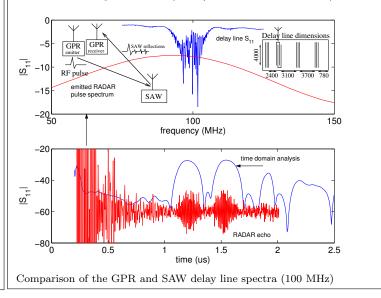

J.-M Friedt ¹, T. Rétornaz¹, S. Alzuaga², T. Baron², G. Martin², S. Ballandras^{1,2}, M. Griselin ³, J.-P Simonnet⁴ ¹SENSeOR SAS, ²FEMTO-ST, ³ThéMA, ⁴Chronoenvironnement, Franche-Comté University/CNRS, Besançon, France


Wireless, passive (battery-less) sensors interrogated by Ground Penetrating RADAR

Objective: complementing widely available geophysical characterization instruments (GPR) with sensing capability :

Ground Penetrating RADAR (GPR):

- bistatic antenna configuration, pulse emitter
- stroboscopic (equivalent time sampling) receiver
- \Rightarrow low power, low cost setup for baseband measurement (magnitude **and phase** informations)
- \Rightarrow typical center frequency $f_c \in [100 1000]$ MHz, sampling frequency $\simeq 10 \times f_c$
- sampling duration $\simeq 3 \ \mu s$ (225 m in ice)
- peak power 2 kW, interrogation raange ≥ 150 m in ice
- BUT sensitive to dielectric/conductivity changes

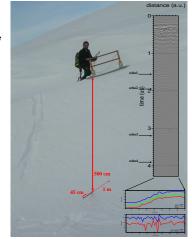


Sensor located at 1 m & 50 cm from receiving antenna Conclusion and perspectives

- Interrogation range: demonstrated at 5 m, signal to noise ratio \Rightarrow 40 m ?
- only requires post-processing, no need to modify GPR hardware
- mandatory **differential measurement** (poor local oscillator resolution + distance dependence)
- temperature with $\sim \mathbf{K}$ accuracy
- applicable to **temperature** probe, **pressure** sensor, **strain** gage
- application to acoustic resonators ? (narrowband, low loss transducer)

Surface Acoustic Wave (SAW) delay line:

- electromechanical sensor based on piezoelectric substrates (LiNbO₃ (YXl)/128^o for its high coupling)
- sensing based on mechanical wave velocity measurement
- time delay between reflection \sim physical quantity
- intrinsic radiofrequency sensor (no DC conversion)
- linear device (no rectifier threshold voltage)
- acoustic velocity $\simeq 10^{-5} \times \text{electromagnetic velocity}$ $\Rightarrow 3\mu \text{s}$ delay =9 mm path length = 4.5 mm long sensor
- **BUT** large antenna $(\lambda_{EM}/2 \simeq 1 \text{ m at } 100 \text{ MHz})$



\Rightarrow Practical **measurement strategy** demonstration:

- 1. probe delay line sensor with GPR,
- 2. identify delay response through Fourier transform (FFT),
- 3. measure absolute FFT phase,
- 4. phase difference insensitive to GPR-sensor distance,
- 5. representative of physical quantity (preliminary calibration), here temperature

Range d estimate :

- 1. point-like target \Rightarrow Free Space Propagation Loss as d^{-4}
- 2. $d_{SAW} = d_{interface} \times 10^{(IL_{interface} IL_{SAW})/40}$, with typical
 - SAW insertion loss (IL) at -35 dB, and ice-rock interface -19 dB ($\varepsilon_{rock} = 5$, $\varepsilon_{ice} = 3.1$, Fresnel eq.)

