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Wireless, passive (battery-less) sensors interrogated by Ground Penetrating RADAR

Objective: complementing widely available geophysical characterization instruments (GPR) with sensing capability :

Ground Penetrating RADAR (GPR):

• bistatic antenna configuration, pulse emitter
• stroboscopic (equivalent time sampling) receiver
• ⇒ low power, low cost setup for baseband measurement

(magnitude and phase informations)
• ⇒ typical center frequency fc ∈ [100 − 1000] MHz, sam-

pling frequency '10×fc

• sampling duration '3 µs (225 m in ice)
• peak power 2 kW, interrogation raange ≥ 150 m in ice
• BUT sensitive to dielectric/conductivity changes
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Ice-rock interface (East Loven Glacier, Spitsbergen, Norway, 79 oN)

Surface Acoustic Wave (SAW) delay line:

• electromechanical sensor based on piezoelectric substrates
(LiNbO3 (YXl)/128o for its high coupling)
• sensing based on mechanical wave velocity measurement
• time delay between reflection ∼ physical quantity
• intrinsic radiofrequency sensor (no DC conversion)
• linear device (no rectifier threshold voltage)
• acoustic velocity ' 10−5×electromagnetic velocity
⇒ 3µs delay =9 mm path length = 4.5 mm long sensor
• BUT large antenna (λEM/2 ' 1 m at 100 MHz)
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1. echo position v.s time
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2. echo peak power position

trace 200
trace 500

0 100 200 300 400 500

−4

−3

−2

−1

0

1

2

3

trace number

φ
(F

F
T

)

3. phase of FFT at peak power position
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4. scale to convert phase to temperature
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Sensor located at 1 m & 50 cm from receiving antenna

⇒ Practical measurement strategy demonstration:

1. probe delay line sensor with GPR,
2. identify delay response through Fourier transform (FFT),
3. measure absolute FFT phase,
4. phase difference insensitive to GPR-sensor distance,
5. representative of physical quantity (preliminary calibration),

here temperature

Range d estimate :

1. point-like target ⇒ Free Space Propagation Loss as d−4

2. dSAW = dinterface × 10(ILinterface−ILSAW )/40, with typical
SAW insertion loss (IL)
at -35 dB, and ice-rock
interface -19 dB (εrock = 5,
εice = 3.1, Fresnel eq.)

Conclusion and perspectives
• Interrogation range: demonstrated at 5 m, signal to noise ratio ⇒ 40 m ?
• only requires post-processing, no need to modify GPR hardware
• mandatory differential measurement (poor local oscillator resolution + distance de-

pendence)
• temperature with ∼ K accuracy
• applicable to temperature probe, pressure sensor, strain gage
• application to acoustic resonators ? (narrowband, low loss transducer)
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