
Carbon balance of crops: Overview of 7 years of investigation

Moureaux C., Dufranne D., Suleau M., Vancutsem F., Bodson B., **Aubinet M.**

Lonzée site (Belgium)

- 12 ha (~250 x 500 m)
- Fairly flat field
- $T_{average} = 10^{\circ}C$
- $-P_{annual} = 800 \text{ mm}$
- Cultivated for more than 75 years and for more than15 years with a 4-year rotation

Former papers on Lonzée site:

1st year of flux measurements on sugar beet crop: *Moureaux et al., AFM, 2006*

Carbon balance of winter wheat: *Moureaux et al., GCB, 2008*

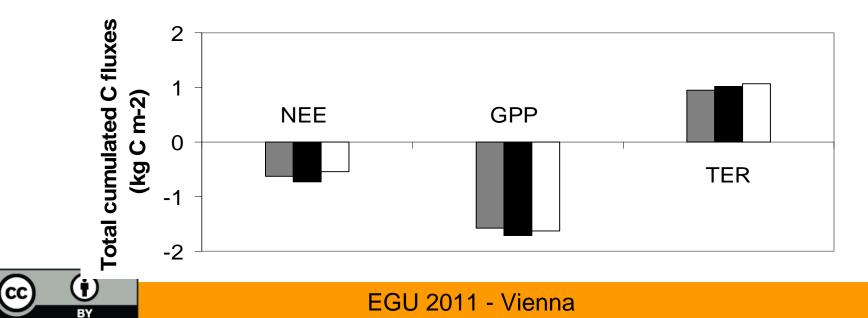
Carbon budget of first 4-year rotation Aubinet et al., AFM, 2009

Inter annual variability of winter wheat Crop (Dufranne et al., 2011)

- 3 winter wheat crops (2005 2007 2009) on the Lonzée site
- Part of meteorological conditions and management in inter annual variability
 - Crop development
 - $-CO_2$ fluxes
 - Yield

Main meteorological particularities

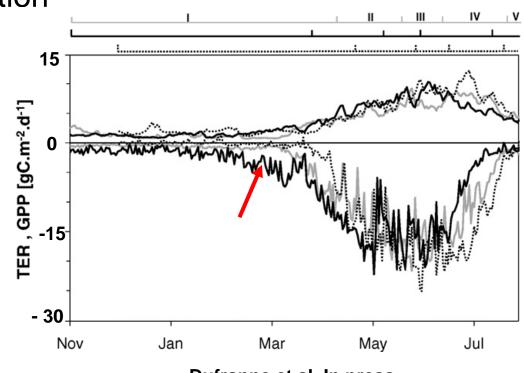
Season B


- Winter and early spring :
 - higher radiation
 - higher temperature
 - lower precipitation (0 mm in April)
- Late spring and summer
 - Iower radiation (15 and 30 % lower than in season A and B)
 - lower temperature
 - higher precipitation

NEE, GPP and yield

	Season A	Season B	Season C
Yield [tha ⁻¹]		↓ I	
Grain	8.9 ± 0.3	7.5 ± 0.5	9.1 ± 0.4
Straw	4.2 ± 1.0	3.4±-	3.7 ± 1.1
Grain bulk density at 15% of	75.7 ± 0.5	69.9 ± 0.5	77.7 ± 0.8
humidity [kg ha l ⁻¹]			
Ear density [ears m ⁻²]	464 ± 42	464 ± 62	426 ± 88

Dufranne et al. In press


Respiration partitioning Rotation comparison

GPP and yield

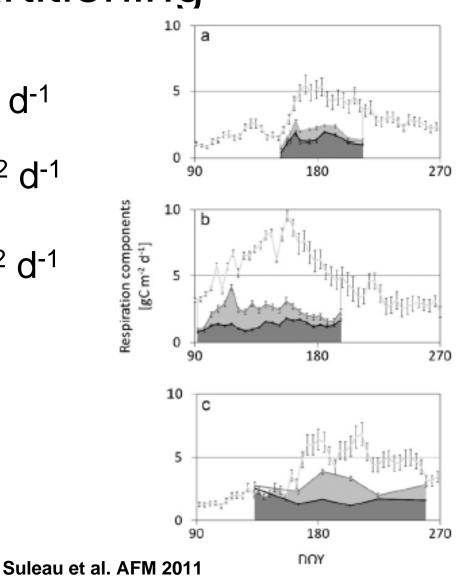
- Large GPP in season B results from high assimilation in early spring
- Yield was limited by late spring processes
 - Flag leaf size reduction
 - Fungal diseases

CC

Dufranne et al. In press

TER partitioning into its autotrophic and heterotrophic components *Suleau et al., Agric.For.Metorol. (2011)*

- Method :
 - TER obtained from discriminating eddy covariance NEE measurements
 - AR and HR obtained from soil respiration measurements carried in planted area and root exclusion zone
- 3 crops
 - Potato for seed (2006)
 - Winter wheat (2007)
 - Sugar beet (2008)



Respiration partitioning Rotation comparison

TER partitioning

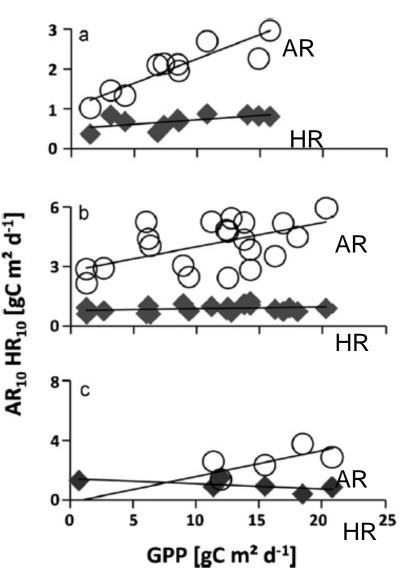
- TER : from 4 to 6.4 gC m⁻² d⁻¹
- HR : from 1.3 to 1.7 gC m⁻² d⁻¹
- AR : from 2.7 to 5.0 gC m⁻² d⁻¹ (60 – 80 % of TER)

Ara : 60 – 80 % of AR

Main drivers of AR and HR

• HR dependency on temperature

	Q10		
	Estimate	95% CI	
AR			
Potato	1.19	(0.62, 1.76)	
Winter wheat	1.76	(-0.06, 2.44)	
Sugar beet	1.19	(-0.14, 3.12)	
HR			
Potato	2.17	(1.70, 2.64)	
Winter wheat	2.11	(1.78, 2.44)	
Sugar beet	2.05	(1.32, 2.78)	

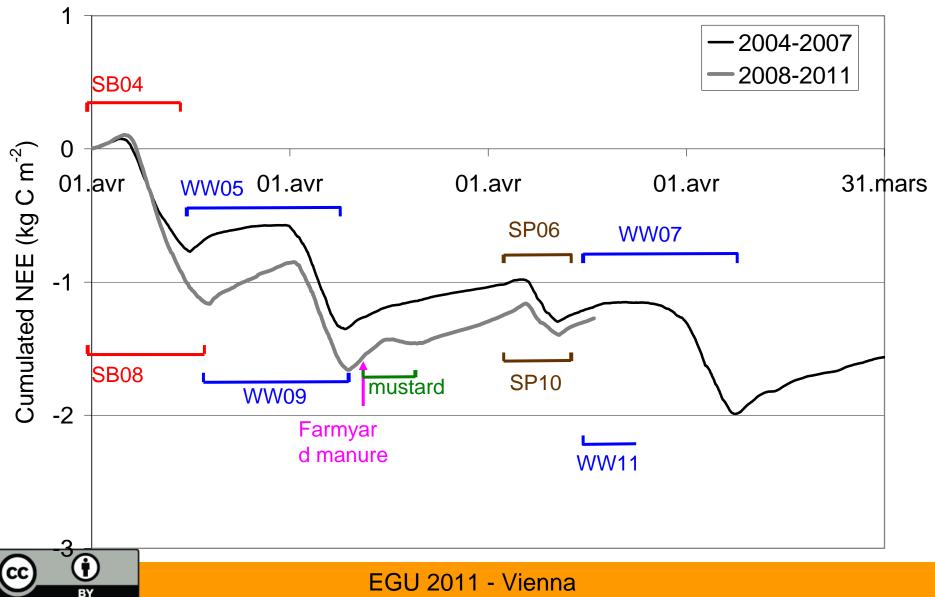

Interannual variability

Respiration partitioning

Rotation comparison

Main drivers of AR and HR

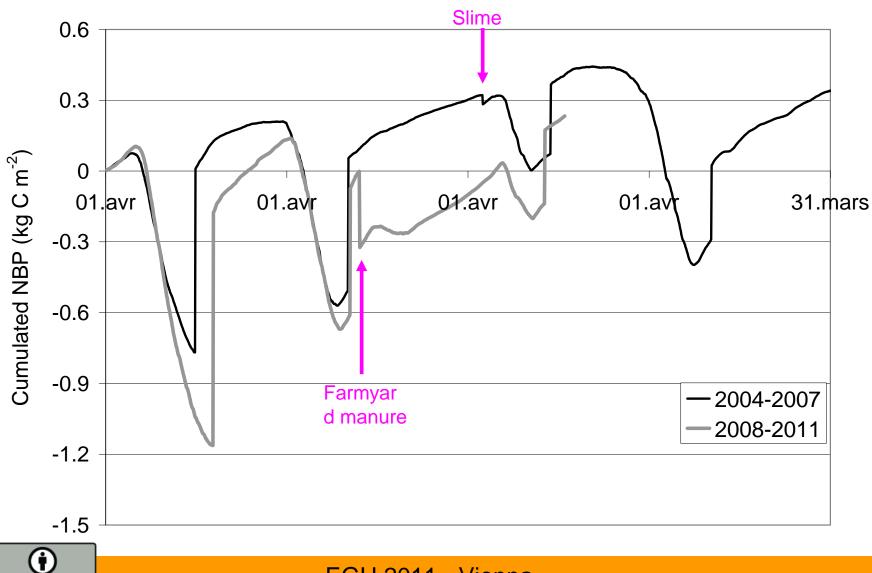
- AR₁₀ dependency on GPP
- No significant relationship between HR₁₀ and GPP


Suleau et al. AFM 2011

Interannual variability

Respiration partitioning

Rotation comparison


Cumulated NEE

(cc)

BY

Cumulated NBP

Summary

- GPP and NEE interannual variability not (always) linked with crop yield.
- In winter wheat, yield is linked to climate but through complex mechanisms (difficult to model).
- TER seasonal variability is mainly controlled by those of AR.
- AR and HR are driven by different variables.
- Results of second rotation seem to confirm that the crop behave globally as a source.

Thank you !

