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Formulation of a statistical Emulator of the Climate Response
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nlms Weighted principal component analysis (WPCA) 1s The experimental design 1S chosen independent Figure 2: Principal component analysis : annual mean surface temperature [oC] Figure 1
Formulate and develop a GCM surrogate for the | applied to project the output data onto a lower from the model. Here, we choose a MaxiMin Latin __ Wean i S R
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response of the climate’s fast components | dimensional manifold to explore and extract the Hypercube Design which maximizes the minimum
(atmosphere, ocean, land surface) to variations of | principal modes of climate variability. The principal distance between design points but requires even
the astronomical forcing during the Pleistocene, | components (PCs) are ranked according to the order spacing of the levels of each input data. This
requiring only a small amount of computing time | ©Of decreasing eigenvalues. In order to maximize the design permit to explore more parameters than a
and providing uncertainty estimates. For the | Information about the model response, using an grid using the same ensemble size, as the later
construction and calibration of our climate | optimal number of experiments, the set of input don’t need to grow exponentially with the
simulator surrogate, we combine three methods. A | parameters was designed following a space filling dimensionality of the parameter space.
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“space filling design” to choose the set of input design. -
parameter used to run the experiments, a A
multivariate analysis technique to derive dominant
modes of climate variability on the output data, and
a multivariate Gaussian Process to emulate the
simulator’s response.
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Input : Experimental design for
computer simulations
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'Hypothesi

Insolation during long time variations 1s influenced
by the eccentricity € the longitude of the
perihelion @ and the obliquity ¢

To deal with this astronomical theory of

paleoclimate, 1nput data are expressed in an il
adequate form and then consider the basis : - Emulator
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VRl Derivation of the principal

« modes of climate variability :
Reduced Output
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The statistics of the fast components of the climate The output is than reconstructed from the principal Annual mean surface temperature e = 0.383972400, e.sinw =-.001461294 , £ = 220

system could be in principle estimated with a  component space to the original full space.
general circulation model of the atmosphere and

Emulated output Simulated output Emulated output - Simulated output
the ocean (AOGCM). However, the demand on | | 1 — P— —— . | : .
computing resources would be far too excessive. PC Emulator » | & |' | % ) ] e ~Seg ) : . St P
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computationally expensive simulator 1s the
construction of a statistical model based on the nnnlicatinn
available runs, that can replace the simulator. This
is a statistical regression problem. As a surrogate, For a first application, we have developed and They correspond to the polar mode, planetary
an emulator is a term used to mean the ful] |designed an emulator of a three-dimensional Earth waves mode and the monsoon one (figure 2). GP o
o : : _ system model of intermediate complexity emulation allow to better capture the nonlinearities |
probabilistic specification for the statistic model. . . . .
. . (LOVECLIM, Goosse et al., 2010), considering of the output without necessitating an excessive
We use a Gaussian Process Emulator. It provides 4

. , the principal components of its response (mean number of experiments. We have considered 3 — T T T T T
both an estimate of the model and quantifies
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surface temperature). The first three principal levels for the 3 input parameter and made 27 ongitude Longitude Longitude

uncertainty about evaluating the emulator at a component account for 99% of the data variance computer experiments.
limited number of input data. (figure 1). Experiment design and emulators : efficient computing and understanding
g




