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Introduction
The use of physically complex models is limited due to the complexity in the measuring some of the parameters and 
calibrating others. The parameterisation of these models is a very difficult task. To run a complex model for a single 
simulation can take a few hours to a few days, depending on the simulation period and complexity of the model. 
The information contained in a time series is not uniformly distributed. The length of the observation period has a 
great influence on the identification of the model parameters. 

So, if we can recognise the critical events which are important for identification of parameter, we can make 
parameterisation of complex models more efficient. In this study, the data depth function is used to identify the 
critical events. Low depth of any point in a multi variate set is an unusual combination in that cloud of points.  
 
The methodology is demonstrated using the hydrological model TOPNET on the Pelorus catchment in New Zealand 
(Figure 1). Once the critical events were selected from a time series of precipitation or discharge, the model is 
calibrated using Robust Parameter Estimation (ROPE) algorithm (Bardossy & Singh, 2010).  The result is compared 
with a standard model calibration, where the whole data set is being used.  The results are very similar. Hence, model 
calibration using critical events may be very useful for the places where there is shortage of data or computational 
resources are limited.
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Depth Function
Data depth is a quantitative measurement of 
how central a point is with respect to a data set  
or a distribution. This gives us the central  
outward ordering of multivariate data points.

Figure 3: Convex hull.

Using unusual events for parameter identification
Critical events correspond to higher information content. These events can be identified from 
the observations with the help of statistical depth function.  Critical events are defined around 
the unusual (low depth) days.

Calibration result  from  all the three cases  for  time period  1990–1993  for  Pelorus Catchment (statistics of best 10 
parameter  sets from  ROPE).

Validation result  from  all the three cases  for  time period  1994–1996  for  Pelorus Catchment (statistics of best 10 
parameter  sets from  ROPE).

Figure 5: Boxplot of residual for calibration time period. Figure 6: Boxplot of residual for validation time period.

Conclusions
•	 Smartly selected and 

measured events are 
sufficient to identify the 
parameters of the model. 
Indeed, the prediction is 
as good as that arising 
from the calibration using 
the whole time period.

•	 Events selection by ICE 
algorithm is more robust 
than random selection 
of events.

•	Critical event based 
calibration can be use for 
incomplete time series.

•	Method has not only 
potential for  discharge 
measurement but may 
also be useful for water 
quality measurements.

Different  Cases for Model Calibration
Case 1: Using whole series for given time period.

Case 2: Using only selected critical events for given time period (events selected by ICE 
algorithm (Singh & Bardossy, 2011). 

Case 3: Using only selected (same number as in Case 2) random events for given time period.

mean NS max NS min NS std % data 
used

Case 1 0.563 0.579 0.558 0.00589 100
Case 2 0.561 0.579 0.554 0.00700 5.7
Case 3 0.380 0.422 0.346 0.02598 5.7

mean NS max NS min NS std

Case 1 0.479 0.517 0.396 0.03223
Case 2 0.480 0.517 0.396 0.03156
Case 3 0.237 0.276 0.215 0.01976

-4 -3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

1
Case 1

Re
la

tiv
e 

re
si

du
al

s

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

1
Case 2

re
la

tiv
e 

re
si

du
al

s

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

1
Case 3

re
la

tiv
e 

re
si

du
al

s

01/01/90 01/01/92
0

500

1000

1500

time (hr)

Di
sc

ha
rg

e 
(m

3 /s
ec

)

 

 

observed Q
Case 1
Case 2
Case 3

01/01/94 01/01/96
0

200

400

600

800

1000

1200

1400

1600

1800

time (hr)

Di
sc

ha
rg

e 
(m

3 /s
ec

)

 

 

observed Q
Case 1
Case 2
Case 3

-1500

-1000

-500

0

500

1000

1
Case 1

Re
la

tiv
e 

re
si

du
al

s

-1500

-1000

-500

0

500

1000

1
Case 2

re
la

tiv
e 

re
si

du
al

s

-1500

-1000

-500

0

500

1000

1
Case 3

re
la

tiv
e 

re
si

du
al

s

DX (p) = min (min (|{x Є X (nh, x − p) > 0}|),

(|{x Є X (nh, x − p) < 0}|))
nh

Figure 8: Hydrograph for all the cases for validation time period.Figure 7: Hydrograph for all the cases for calibration time period.

Figure 4: Unusual events selection

Figure 1: Site map.

1National Institute of Water & Atmospheric Research Ltd,  Christchurch, New Zealand and 2Institute of Hydraulic Engineering, Universität Stuttgart, Germany 

sk.singh@niwa.co.nz

NIWA - experts in environmental science  www.niwa.co.nz

Model Used: TOPNET
Optimization algorithm: ROPE 
Number of Parameter Opt.:  7

Figure 2: Schematic representation of the TOPNET modeling system (Bandaragoda et. al., 2004).

Study area description

Site Name: Pelorus, NZ
Catchment area: 377 km2   
Maximum elevation: 1756 m amsl

Minimum elevation:  35 m amsl
Number of model grids: 43
Average area per grid cell: 8.78 km2
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