

POLITECNICO DI MILANO

THE ROLE OF VULNERABILITY FOR FLOOD EARLY WARNING SYSTEMS (FEWSs) EFFECTIVENES

EGU General Assembly 2011, 3-8 April 2011, Vienna Daniela Molinari, Francesco Ballio, Scira Menoni

What are we going to talk about?

AIM: to investigate how vulnerability affects FEWSs' performance and how it can be modelled

OUTLINE:

- √ To define <u>FEWSs' performance</u>
- √ To identify /discuss <u>vulnerability role</u> for FEWSs' performance
- ✓ To supply a case study to describe how vulnerability can be modelled in FEWSs' performance assessment
- ✓ To discuss present state of the art and needs for future research.

FEWSs performance as potential damage reduction

Vulnerability's role to define potential damage

Vulnerability's role to define actual damage

Potential damage: vulnerability factors

Actual damage: vulnerability factors

AFFECTING CAPACITY to REACT → POTENTIAL DAMAGE REDUCTION

Modelling vulnerability: the case of Sondrio

AIM: to evaluate FEWS's capacity to reduce potential damage

STEPS

- 1. Evaluation of potential damage
- 2. Evaluation of actual damage

Assumptions

- ✓ Economic approach → intangibles are not evaluated
- ✓ Damage assessment limited to → Buildings
 - → Lifelines (i.e. roads & railways)
 - → Emergency costs
- ✓ Damage assessment limited to → Direct damages
- ✓ Back analysis → Damage evaluation regards 36 past events

Potential damage assessment: vulnerability modelling

Vulnerability of built environment → DEPTH-DAMAGE CURVES

Source: USACE (USA)

VULNERABILITY FACTORS

Vulnerability of buildings

- Number of storeys
- Presence of basement
- Type of use

Vulnerability of lifelines

- Service supplied

WARNING OUTCOMES		Observed	
		Flood	No flood
Forecasted	Flood	Forecasted Event	False Warning
	No flood	Missed Event	Calm

WARNING OUTCOMES		Observed	
		Flood	No flood
Forecasted	Flood	Forecasted Event	False Warning
	No flood	Missed Event	Calm

DAMACE		Observed	
DAMAGE		Flood	No flood
Foreseted	Flood	+	0
Forecasted	No flood	++	0

WARNING OUTCOMES		Observed	
		Flood	No flood
Forecasted	Flood	Forecasted Event	False Warning
	No flood	Missed Event	Calm

DAMAGE		Observed	
DAMAGE		Flood	No flood
Egrapated	Flood	+	0
Forecasted	No flood	++	0

WARNING &		Observed	
EMERGENCY	COSTS	Flood	No flood
Forecasted	Flood	E+W	W
	No flood	E	0

WARNING OUTCOMES		Observed	
		Flood	No flood
Forecasted	Flood	Forecasted Event	False Warning
	No flood	Missed Event	Calm

WARNING OUTCOMES		Observed		
		Flood		No flood
Forecasted	Flood		0.22	80.0
	No flood		0.25	0.44

Actual damage assessment: vulnerability modelling

Level of preparedness – mitigation measures

Mitigation Action (Contingency plan)

- Levees temporary rising/reinforcement
 Bridges gates
- Individual actions (e.g. lift contents, turn off gas, etc)

FIXED PERCENTAGE OF POTENTIAL DAMAGES

Vulnerability factors:

- Lead time
- People experience

HYDRAULIC ANALYSIS (i.e. weir outflow)

Actual damage assessment: vulnerability modelling

Level of preparedness -warning costs

ANALYSIS OF LOCAL DATA

Vulnerability factors:

socio/political context

FEWSs performance assessment: results

Potential vs. actual damages

FEWSs performance assessment: results

Vulnerability plays a crucial role affecting both POTENTIAL and ACTUAL DAMAGES

Vulnerability should be included in FEWSs assessments

There is a need to improve current VULNEARBILITY MODELS

All relevant vulnerability factors must be taken into account

Vulnerability plays a crucial role affecting both POTENTIAL and ACTUAL DAMAGES

Vulnerability must be included in FEWSs assessments

There is a need to improve current VULNEARBILITY MODELS

All relevant vulnerability factors must be taken into account

Molinari D., Handmer J., A behavioral model for quantifying flood warning effectiveness, *Journal of flood risk management* (on line first)

Thanks for your attention!

Daniela Molinari, PhD
Politecnico di Milano – Department of Hydraulics
Piazza Leonardo Da Vinci 32
20133, Milano
Tel +39 02 2399 6234
Fax +39 02 2399 6298
daniela.molinari@polimi.it