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On the Statistical Properties
of Record-Breaking Temperatures

A systematic study of the statistics of record-breaking temperatures is 
presented. We �rst consider temperature time series to be Gaussian white 
noises and give the classic record-breaking theory results for any 
independent and identically distributed (i.i.d.) process. We then carry out 
Monte Carlo simulations to determine the in�uence of long-range 
correlations and linear temperature trends. For the range of fractional 
Gaussian noises that are observed to be applicable to temperature time 
series, the in�uence on the record-breaking statistics is small. We next 
superimpose a linear trend on a Gaussian white noise and extend the theory 
to include the e�ect of an additive trend. We determine the ratios of the 
number of maximum to the number of minimum record-breaking 
temperatures. We �nd the single governing parameter to be the ratio of the 
temperature change per year to the standard deviation of the underlying 
white noise. To test our approach, we consider the 30-year record of 
temperatures at the Mauna Loa Observatory. We determine the temperature 
trends by direct measurements and use our simulations to infer trends from 
the number of record-breaking temperatures. �e two approaches give 
values that are in good agreement. We �nd that the warming trend is 
primarily due to an increase in the (overnight) minimum temperatures 
while the maximum (daytime) temperatures are approximately constant. F
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Mean number of record breaking maximum or minimum values <nrb> as a function of 
the length n of the time series [1]

where γ = 0.5772 is the Euler-Mascheroni constant.

C1
Influence of correlations and trends on record-breaking statistics

Results for a white-noise time series

Self-a�ne correlated time series have a power-law dependence of the power-spectral 
density S on the frequency f [2]

β=0 is a white noise, β=2 is a Brownian walk, -1< β <1 are stationary fractional noises, 
1< β< 3 are nonstationary fractional walks.

Results for fractional Gaussian noises and fractional Brownian walks

< nrb(n)>  = 1 + … ≈ ln (n) + γ1
2
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n
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S( f ) α f -β
(2)

C2
Results for a fractional Gaussian noise (Monte Carlo simulations)

Typically, for a temperature true series we have β≈0.5 [3]  so that the in�uence of long 
range correlations is small.

FIG. 1. Dependence of the mean number of record-breaking values <nrb> as a function of the number of events n. �ese results do not 
depend upon using maximum or minimum values. Results are shown 
for fractional Gaussian noises with β = 0, 0.25, 0.50, 0.75, and 1.00. 
�e results for the white noise β = 0 are identical to the i.i.d. random 
variable theory given in Eq. (1).
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Results for a fractional Brownian walk (Monte Carlo simulations)

For  β=2, 2.5, and 3 the results correlate with

FIG. 2. Dependence of the mean number of record-breaking values <nrb> as a function of the number of events. Results are shown for 
fractional Brownian walks β = 1.0, 1.5, 2.0, 2.5, and 3.0. �e results 
for β = 2.0, 2.5, and 3.0 are compared with the power-law correlation 
given in Eq. (3) for ζ and Eq. (4) for Ha.

A property of fractional Brownian walks is [2]

where Ha is the Hausdor� measure.

< nrb(n)> α nζ (3)

σ α nHa (4)
Ha =    (β−1)1
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Results with a linear trend

We assume that the mean of a Gaussian white noise with unity standard deviation is 
given by

FIG. 3. Mean numbers of record-breaking maximum values <nrbmax> and record-breaking minimum values <nrbmin>  are given as 
a function of the slope α for η = 30, 60, 90, and 120 values.

FIG. 4. Ratios of the mean number of record-breaking maximum 
values to the mean number of record-breaking minimum values <nrbmax> / <nrbmin> are given as a function of the slope α for
n = 30, 60, 90, and 120 values.

Results of Monte Carlo simulations are

< yn>  = < y1> + α (n-1')
(5)
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Application to record-breaking temperatures at the Mauna Loa Observatory, Hawaii

Measurements at this laboratory established the systematic increase in global CO2.

It can be argued that temperature trends at this site are representative of global values.

We utilize daily maximum and minimum temperatures for the period January 1, 1977 
to December 31, 2006 [4].

FIG. 5. �e best �t linear temperature trends dT/dt for the 30 years are given for the 365 days of the 
year. �e trends of both maximum daily temperatures dTmax/dt and minimum daily temperatures 
dTmin/dt are given.

We obtain best fit linear trends for each day of the year
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FIG. 6. �e mean annual maximum and minimum temperatures
are given as a function of time from 1977 to 2006.

FIG. 7. �e average number of record-breaking maximum and 
minimum temperatures, <nrbmax> and  <nrbmin>, as a function of 
time measured forward from January 1, 1977. �e average is over 
the 365 days of the year. Also included is the number expected for 
an i.i.d. random process from Eq. (1).
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We next determine temperature trends inferred from 30 year record-breaking data.
Max. Temps Min. Temps

From Figure 7 <nrbmax>  3.90 3.42

From Figure 3 α –0.0037 0.0213

Standard deviation σ, °C  2.44 1.79

dT/dt ασ °Cyr–1 –0.0091 0.0381 
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