

Supported by:

on the basis of a decision by the German Bundestag

Geochemical and geomechanical behaviour of reservoir rocks during the injection of CO₂ in deep geological formations: results of the project COORAL

Herwig Marbler, Kirsten Erickson, Christof Lempp, Michael Schmidt, and Herbert Pöllmann

Martin-Luther-University Halle-Wittenberg, Germany

EGU 2011 Vienna

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

COORAL: CO₂ Purity for Capture and Storage

Key question:

What are the **optimum proportions of carbon dioxide and incidental substances** in the separated gas streams of different power plant types to

- ensure long-term, safe geological storage,
- prevent corrosion of equipment and pipelines and
- keep costs of the CCS technology economically acceptable ?

× BAM

COORAL: CO₂ Purity for Capture and Storage

MLU

Technische Universität Hamburg-Harburg

GUT

Project duration: May 2009 to September 2012

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Organisation und Subprojects

To optimize the process chain: power generation – transport – injection – geological storage.

Combined geochemical/ geomechanical investigations

Experiments with: $scCO_2 + SO_x$, NO_x , O_2 • autoclave reactor system

heatable triaxial pressure cell

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG Herwig Marbler et al.:

Herwig Marbler et al.:

Classification of lithotypes by reservoir properties: porosity & permeability

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Herwig Marbler et al.:

Classification of lithotypes by reservoir properties: porosity & permeability

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Experimental flow

Saturation

Geomechanical tests in a triaxial pressure cell

MARTIN-LUTHER-UNIVERSITÄT

Influence of rock saturation, confining pressure (σ_3), CO₂ pore fluid pressure and alteration on the maximum effective pressure

Herwig Marbler et al.:

- Dry rocks can resist higher differential stresses than saturated rocks
- No clear differences between pure CO_2 and CO_2 + SO_2 as pore fluid
- Trends of chemical induced mechanical weakening of the sandstones

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Alteration effects on the am silicatic sandstone

Herwig Marbler et al.:

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Alteration on the carbonatic sandstone

• T:	100°C
• p:	100 bar
 duration: 	20 days

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG Geochemical and geomechanical behaviour of reservoir rocks during the injection of CO2 in deep geological formations: results of the project COORAL

Herwig Marbler et al.:

Alteration on the carbonatic sandstone

• T:	100°C
• p:	100 bar
 duration: 	20 days

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG Geochemical and geomechanical behaviour of reservoir rocks during the injection of CO2 in deep geological formations: results of the project COORAL

Herwig Marbler et al.:

Fluid evolution during the autoklave experiments

Herwig Marbler et al.:

Ro-sandstone; 624 h, 100 bar, 100°C; CO₂+ SO₂

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Fluid evolution during the autoklave experiments

Herwig Marbler et al.:

Ro-sandstone; 624 h, 100 bar, 100°C; CO₂+ SO₂

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Influence of rock alteration on the elastic behaviour of the investigated sandstones

ARTIN-LUTHER-UNIVERSITÄT IALLE-WITTENBERG

Geochemical and geomechanical behaviour of reservoir rocks during the injection of CO2 in deep geological formations: results of the project COORAL

Herwig Marbler et al.:

Conclusions

- The strength behaviour of different types of sandstones varies with different pore fluids and different degrees of their saturation.
- Various types of fluids (H₂O, brine, scCO₂) cause different maximum effective stresses at changing lithostatic pressure conditions. This may be due to different pore space geometries and permeability.
- The experimental determined differences in rock strength and deformability between fresh and altered samples demonstrates trends of chemically induced mechanical weakening of the studied reservoir sandstones.

