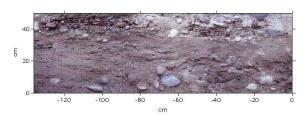


UNIVERSITÀ DEGLI STUDI DI MILANO

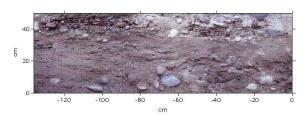
Sediments' connectivity and transport properties

F. Baratelli, R. Bersezio, M. Giudici, L. Cattaneo, C. Vassena, D. dell'Arciprete, F. Felletti

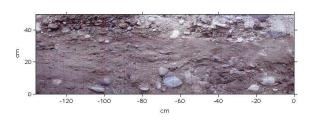
EGU General Assembly 2011



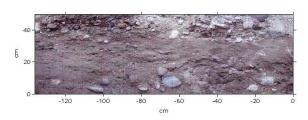
- The hydrofacies heterogeneity at the fine scale controls water flow and contaminant transport at the macroscopic scale
- Which are the main factors affecting this process?
 - conductivity contrasts among different facies
 - relative abundance and number of different facies
 - connectivity of the most permeable facies



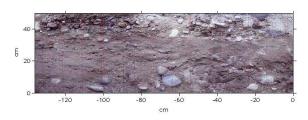
- The hydrofacies heterogeneity at the fine scale controls water flow and contaminant transport at the macroscopic scale
- Which are the main factors affecting this process?



- The hydrofacies heterogeneity at the fine scale controls water flow and contaminant transport at the macroscopic scale
- Which are the main factors affecting this process?
 - conductivity contrasts among different facies



- The hydrofacies heterogeneity at the fine scale controls water flow and contaminant transport at the macroscopic scale
- Which are the main factors affecting this process?
 - conductivity contrasts among different facies
 - relative abundance and number of different facies

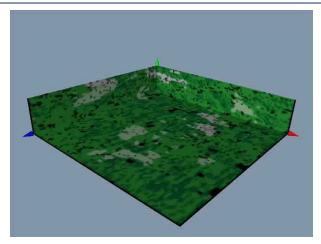


- The hydrofacies heterogeneity at the fine scale controls water flow and contaminant transport at the macroscopic scale
- Which are the main factors affecting this process?
 - conductivity contrasts among different facies
 - relative abundance and number of different facies
 - connectivity of the most permeable facies

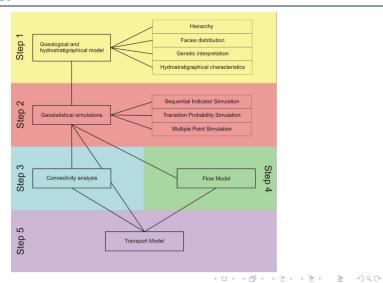
Vassena et al., Hydrogeology J, 2010

- presence of preferential flow paths (PFPs) has significant effects on
 - travel times
 - dispersion

bimodal peaks of the breakthrough curves (BTCs)



Methodology



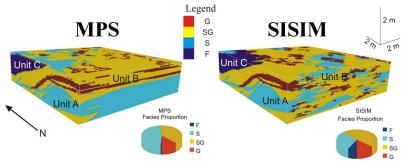
Case study

Dell'Arciprete et al., Adv. Water Resour., submitted

ullet A prismatic block of sediments (volume $pprox 100 \text{ m}^3$) dug in a quarry site into real sediments of the river Lambro basin (Northern Italy)

Case study

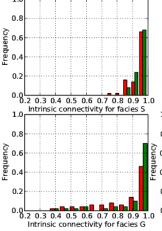
- A prismatic block of sediments (volume $\approx 100 \text{ m}^3$) dug in a quarry site into real sediments of the river Lambro basin (Northern Italy)
- Geological and hydrostratigraphical model
- Geostatistical simulation: 2 ensembles of 50 equiprobable realizations with two methods:



- Evaluation of hydrofacies connectivity indicators for the different realizations:
 - **Intrinsic connectivity** of the facies *p*:

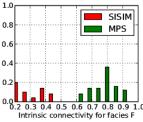
$$C_p^* = P[\mathbf{x} \leftrightarrow \mathbf{y} | \ \mathbf{x} \in \Omega_p, \ \mathbf{y} \in \Omega_p, \ \mathbf{x} \neq \mathbf{y}]$$

$$\approx \frac{\text{\# connected pairs of the facies } p}{\text{\# pairs of the facies } p}$$



SISIM: more disorganized

MPS: reproduces the highpermeability volumes that could represent the PFPs

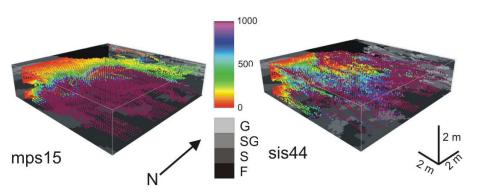


Flow and transport modeling

 Numerical experiments of convective transport of a non-reactive solute:

- flow field computed with a flow model for steady state saturated flow
- convective transport modelled with a particle tracking technique

• The numerical experiments simulate the evolution of a non-reactive tracer for a plume istantaneously injected through the inflow boundary (number of particles injected ≈ 4000)



Vassena et al., Hydrogeology J, 2010

ullet heterogeneous porous medium o equivalent homogeneous porous medium

ADE
$$\frac{\partial C_F}{\partial t} = -v \frac{\partial C_F}{\partial l} + D \frac{\partial^2 C_F}{\partial l^2}$$

 Initial Condition: initially no solute in the domain

$$C_F(I,0) = 0, I > 0$$

 Boundary Conditions: instantaneous injection of M [kg/m²

$$C_F(0,t) = 2Mq^{-1}\delta(t), \ t \ge 0$$
$$\lim_{l \to +\infty} C_F(l,t) = 0, \ t \ge 0$$

Laplace Transform method $~~\downarrow$

$$C_F(l,t) = \frac{M}{q} \frac{l}{\sqrt{4\pi Dt^3}} \exp\left[-\frac{(l-vt)^2}{4Dt}\right]$$

Vassena et al., Hydrogeology J, 2010

ullet heterogeneous porous medium o equivalent homogeneous porous medium

ADE
$$\frac{\partial C_F}{\partial t} = -v \frac{\partial C_F}{\partial l} + D \frac{\partial^2 C_F}{\partial l^2}$$

Initial Condition:

$$C_F(I,0) = 0, I > 0$$

Boundary Conditions:

$$C_F(0,t) = 2Mq^{-1}\delta(t), \ t \ge 0$$

 $\lim_{t \to 0} C_F(l,t) = 0, \ t \ge 0$

$$C_F(l,t) = \frac{M}{q} \frac{l}{\sqrt{4\pi Dt^3}} \exp\left[-\frac{(l-vt)^2}{4Dt}\right]$$

Vassena et al., Hydrogeology J. 2010

ullet heterogeneous porous medium o equivalent homogeneous porous medium

ADE
$$\frac{\partial C_F}{\partial t} = -v \frac{\partial C_F}{\partial l} + D \frac{\partial^2 C_F}{\partial l^2}$$

• Initial Condition: initially no solute in the domain

$$C_F(I,0) = 0, I > 0$$

 Boundary Conditions: instantaneous injection of $M [kg/m^2]$

$$C_F(0,t) = 2Mq^{-1}\delta(t), \ t \ge 0$$
$$\lim_{l \to +\infty} C_F(l,t) = 0, \ t \ge 0$$

$$\lim_{I o +\infty} C_F(I,t) = 0, \ t \geq 0$$

$$C_F(l,t) = \frac{M}{q} \frac{l}{\sqrt{4\pi Dt^3}} \exp\left[-\frac{(l-vt)^2}{4Dt}\right]$$

Vassena et al., Hydrogeology J. 2010

ullet heterogeneous porous medium o equivalent homogeneous porous medium

ADE
$$\frac{\partial C_F}{\partial t} = -v \frac{\partial C_F}{\partial l} + D \frac{\partial^2 C_F}{\partial l^2}$$

 Initial Condition: initially no solute in the domain

$$C_F(I,0) = 0, I > 0$$

 Boundary Conditions: instantaneous injection of $M [kg/m^2]$

$$C_F(0,t) = 2Mq^{-1}\delta(t), \ t \ge 0$$

$$\lim_{l \to +\infty} C_F(l,t) = 0, \ t \ge 0$$

Laplace Transform method

$$C_F(l,t) = \frac{M}{q} \frac{l}{\sqrt{4\pi Dt^3}} \exp\left[-\frac{(l-vt)^2}{4Dt}\right]$$

Dual Domain Model (DDM)

Baratelli et al., Transp. Por. M, 2010

- ullet heterogeneous porous medium o two overlapping domains:
 - (H) fast domain (High hydraulic conductivity)
 - (L) slow domain (Low hydraulic conductivity)
- the two domains are considered as disconnected (no water or solute exchange) → two independent ADEs
- the solute flux in each domain is given by the SDM solution
- the total solute flux is the weighted sum of the solute fluxes in each domain (weighted over the volume fraction of each domain)

Dual Domain Model (DDM)

Baratelli et al., Transp. Por. M, 2010

- ullet heterogeneous porous medium o **two overlapping domains**:
 - (H) fast domain (High hydraulic conductivity)
 - (L) slow domain (Low hydraulic conductivity)
- the two domains are considered as disconnected (no water or solute exchange) → two independent ADEs
- the solute flux in each domain is given by the SDM solution
- the total solute flux is the weighted sum of the solute fluxes in each domain (weighted over the volume fraction of each domain)

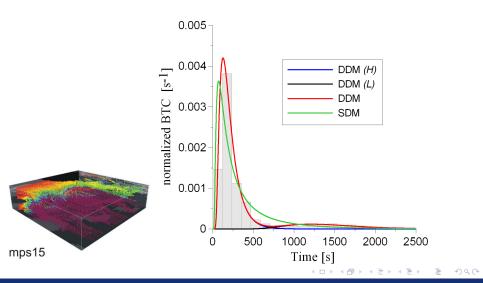
- ullet heterogeneous porous medium o two overlapping domains:
 - (H) fast domain (High hydraulic conductivity)
 - (L) slow domain (Low hydraulic conductivity)
- the two domains are considered as disconnected (no water or solute exchange) → two independent ADEs
- the solute flux in each domain is given by the SDM solution
- the total solute flux is the weighted sum of the solute fluxes in each domain (weighted over the volume fraction of each domain)

Dual Domain Model (DDM)

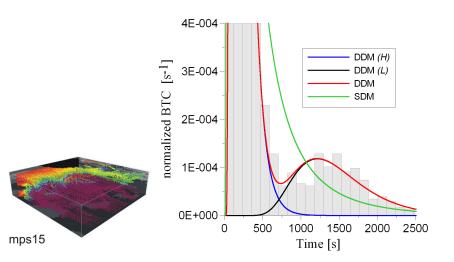
Baratelli et al., Transp. Por. M, 2010

- ullet heterogeneous porous medium o **two overlapping domains**:
 - (H) fast domain (High hydraulic conductivity)
 - (L) slow domain (Low hydraulic conductivity)
- the two domains are considered as disconnected (no water or solute exchange) → two independent ADEs
- the solute flux in each domain is given by the SDM solution
- the total solute flux is the **weighted sum of the solute fluxes** in each domain (weighted over the volume fraction of each domain)

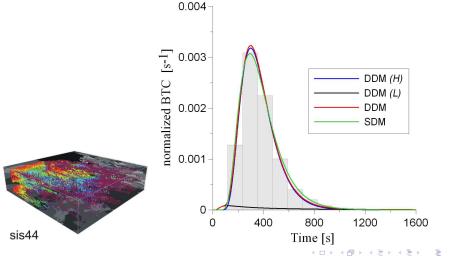
Transport modeling



Transport modeling



Transport modeling



Conclusions

- The relevance of the DDM with respect to the SDM is in agreement with the results of the connectivity analysis:
 - the fit of the experimental data is greatly improved in those cases where the presence of preferential flow paths was evidenced by the connectivity analysis
- The DDM permits to describe the effects of the presence of preferential flow paths on the transport of solutes (bimodal peaks in the BTC)
- Dual domain models can be effectively applied...
 - ...even to media with small hydraulic conductivity contrasts
 - and at different scales:
 - $\approx 10 \text{ m}^3$ [Baratelli et al., Transp. Por. M, 2010]
 - $\approx 100~\text{m}^3$ [Dell'Arciprete et al., Adv. Water Resour., submitted]

Outlook

- Improvement of the DDM:
 - exchange term
 - multi-domain model
- Quantify the relation between facies connectivities, transport parameters (velocity, dispersion coeffcient) and the 'duality' of the porous medium.

Thank you!

