Flow Transition during Buoyancy-Driven Gas Migration: Experiments and Theory

Helmut Geistlinger, Detlef Lazik and Shirin Samani

Department of Soil Physics, UFZ

Geometry and Stability of Channelized Gas Flow at different Scales

Motivation "Transition between coherent and incoherent flow"

- Remediation: air sparging, SWI (CO₂-H₂O)
- CCS-technology (CO₂-H₂O)
- Bubble dynamics within the capillary fringe (DYCAP)

Outline

- 1. Transition from coherent to incohernt flow
- 2. Geometry and stability of gas channels/fingers
- 3. Can continnum models describe the channelized flow?

Gas flow pattern within 1mm-glass beads

Transition between two different flow regimes

1mm-glass beads : Stable coherent (channelized) flow

1. Transition between coherent and incoherent flow

- 0.5mm-GBS: stable coherent flow
- 2mm-GBS: unstable incoherent flow
- Interesting case: 1mm-GBS at neutral curve

Is there any explantation at pore scale?

Gas flow pattern within 1mm-glass beads

Competition between Capillary and Viscous Forces at Pore scale

Conceptual model (1): Cylindrical flat gas-water interface with radius R_c

Free energy = excess surface free energy + internal viscous energy

$$F = \sigma \cdot (2\pi R_c L) + 8\mu_g Q_p L^2 / R_c^2$$

$$F \to Min: \ \delta F = 0$$

$$R_c = 2 \cdot \sqrt[3]{\frac{Q_p \cdot L \cdot \mu_g}{\pi \cdot \sigma}}$$
Note scale dependence: $R_c \sim L^{1/3}$

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ Department of Soil Physics

Competition between Capillary and Viscous Forces at Pore scale

Conceptual model (2): Undulating gas-water interface R(z)

Free energy functional:

Variational treatment:

$$F(\beta) = \int_{0}^{L_{z}} dz \left(2\pi\sigma R(z,\beta) + \frac{8\mu_{g}Qz}{\left(R(z,\beta)\right)^{2}} \right)$$

eatment: $F \rightarrow Min: \delta F = 0$

di (

Two different variational functions for the gas-water interface:

Pore-Neck-function:

Pore-function

$$R_{1}(z,\beta) = \beta \frac{d_{k}}{4} \left\{ (\xi_{\max} + \xi_{\min}) - (\xi_{\max} - \xi_{\min}) \cos\left(\frac{d_{k}}{\lambda}\right) \right\}$$
$$R_{2}(z,\beta) = \frac{d_{k}}{4} \left\{ (\beta \xi_{\max} + \xi_{\min}) - (\beta \xi_{\max} - \xi_{\min}) \cos\left(\frac{d_{k}}{\lambda}\right) \right\}$$

 Finding the Free energy minimum
 → geometric shape of the gas-water interface at different length scales L and for different flow rates Q

 $(2\pi z)$

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ Department of Soil Physics 2. Geometry and stability of gas channels/fingers

Destabilizing gravitational forces versus stabilizing viscous forces

Buoyancy forces are taken into account by the stability or coherence condition: For a stable vertical (pore) gas channel the gas pressure gradient is given by the hydrostatic gradient $\rho_w g$.

$$Q_{crit} = \frac{\pi \rho_w g}{8\mu_g} R_c^4$$

- Thermodynamical treatment → geometrical shape of the undulating pore channel taking into account capillary and viscous forces
- (2) Calculating the critical flow rate for the neck region (snap-off) yields for the 1mm-GBS the 5 mL/min
 - → i.e. after splitting the flow channel into two flow channels the flow becomes unstable!

Note there is a *length scale-dependent transition* of the flow regime:

 $Q_{crit} \sim L^{4/3}$

Modeling of channelized flow at REV-scale (1)

Pore size distribution

Capillary pressure

Modeling of channelized flow at REV-scale (2)

→ Excellent agreement for flow rates,
 where a dense capillary network is established
 → No fitting of additional parameters!

Reality on field scale:

1mm-GBS-van Genuchten

1mm-GBS-Brooks Corey

0.5mm-GBS-van Genuchten

0.5mm-GBS-Brooks Corey

Gas flow pattern within 1mm-glass beads

Modeling of channelized flow at Sub-scale

Stauffer, F., Xiang-Zhao Kong, and W. Kinzelbach (2009) Advances in Water Resources 32 (2009) 1180–1186

- TOUGH2-program
- uniform distribution
- Leverett-scaling
- Cell size = 5 mm

Pore scale REV-scale Field scale

Pore size distribution

 3s
 6s
 11s
 14s
 0 mL/min

 0 mL/min
 0 mL/min
 0 mL/min
 0 mL/min
 0 mL/min

Gas flow pattern within 1mm-glass beads

Conclusions

→ Be cautious with geometric similarity, since Invasion percolation neglects viscous forces

- → Apply continuum models (generalized Darcy equation), if stability and coherence condition is satisfied !
- → Upscaling can lead to a scale-dependent transition of the flow regime, i.e. to a transition from stable coherent to unstable incoherent flow !
- → The experimental flow chart needs a third dimension: The Length scale L

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ Department of Soil Physics