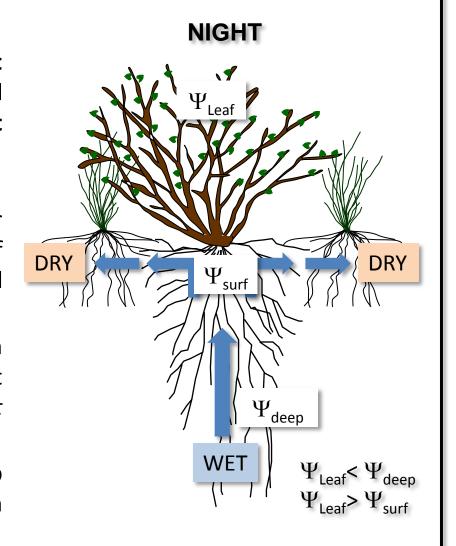


Use of water stable isotopes (180) for Hydraulic lift characterisation

Bariac T., Durand J.-L., **Rothfuss Y**.,
Biron P., Richard P.

EGU General Assembly 2011

06/04/2011


Session HS8.3.1

Soil-plant interactions from the rhizosphere to field scale

Introduction

- ➤ Hydraulic Lift (*HL*) is the movement of water from wetter to dryer soil layers through passive root transport (*Richards and Caldwell*, 1987)
- HL has been reported for a number of plant species but the volumes of water involved are still controversial...
- What are the implications of *HL* on water budgets at different time/spatial scales (e.g. *Jackson et al., 2000*)?
- Water stable isotopes can help quantifying this phenomenon (Dawson, 1993)

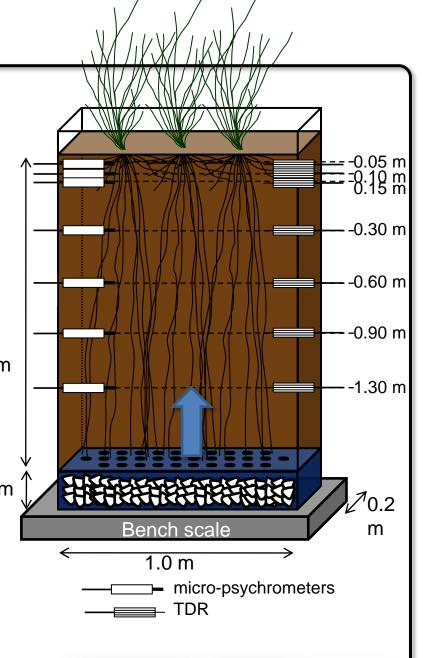
Tools: water stable isotopes

- Water stable isotopes are tracers of occurring processes in ecosystems compartments (e.g. Yakir and Sternberg, 2000)
 - o In soils:
 - Evaporation causes isotopic enrichment at soil surface
 - Root water uptake does not impact soil isotopic composition
 - o In plants:
 - Transpiration causes leaf water enrichment
 - (*grasses*) Leaf input water isotopic composition is accessible through measurements of culm water (xylem sap) isotopic composition
- \triangleright Isotopic compositions are expressed in **deltas** δ (‰) :

$$\delta_{sample} = \frac{R_{sample} - R_{SMOW}}{R_{SMOW}} * 1000 \qquad R_{sample} = \frac{n(H_2^{18}O)_{sample}}{n(H_2^{16}O)_{sample}}$$

Materials and methods

Tall fescue rhizotrons setup installed in a glasshouse Lusignan, INRA, France

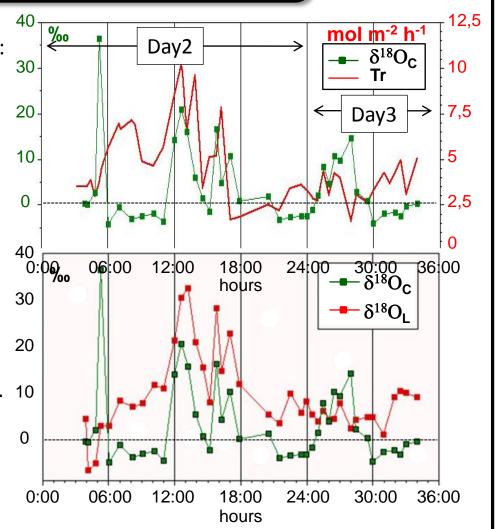


Materials

- Two macro-rhizotrons filled with 450 kg silty-loam soil placed on high precision bench scales
- Supply of water from the bottom only (gravel)
- Monitoring of water contents
 (TDR CS616n, Campbell Scientific),
 potentials (PST55, WESCOR), and
 temperatures (T107, Campbell S)
 at 7 different depths
 1.6 m
 0.1 m
- Plant cover: tall fescue (Festuca arundinacea S.)

Methods

- > Semi-controlled conditions: both macro-rhizotrons are placed in a glasshouse (Lusignan, INRA, France)
 - \circ Initial saturation of the soil with water of known $\delta^{18} {\sf O}_{\sf input\ water}$
 - Seeding (Nov. 17th 2008) when field capacity is reached at soil surface
 - Observation of root elongation
- On « intensive periods » (May 3rd-5th and July 25th-27th 2009):
 - **Labelling** of input water ($\delta^{18}O_{input water} = 450 (+/- 0.15) \%$)
 - \circ Sampling and vacuum distillation of soil ($\theta_{\rm S}$, $\delta^{18}{\rm O}_{\rm S}$)
 - Sampling and vaccum distillation of leaves (Ψ_L and $\delta^{18}O_L$) and culms ($\delta^{18}O_C$)

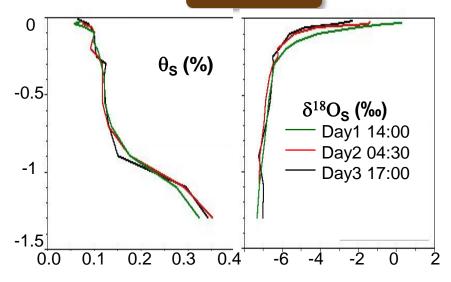


Results and discussion (1)

➤ Intensive period 1 (May 3-5th 2010):

Plant results

- Labelling on Day1 17:00 (+437 %)
- o During day time, high values of T correspond to high values of $\delta^{18}O_{C}$ (deep water uptake)
- \circ Evolution of $\delta^{18}O_{C}$ and $\delta^{18}O_{L}$
- Correlated (day) / not correlated (night)
- At night : deep water uptake under low transpiration rate
 - → Identification of a possible *HL*?



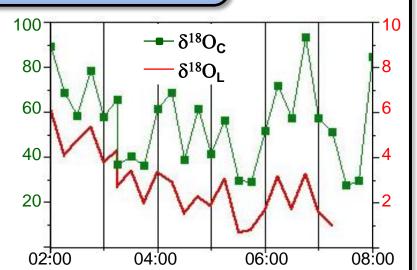
Results and discussion (2)

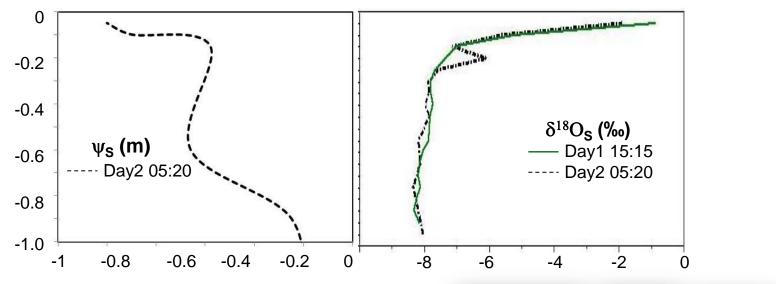
➤ Intensive period 1 (May 3-5th 2010): Soil results

- \circ Much stronger vertical discrepancies of θ_s and $\delta^{18}O_s$ than changes in time
- o Soil very dry at the surface (5-10%) and saturated at the bottom (>43%)
- Evaporation was noticeable at the surface (isotopic enrichment)
- $\circ \delta^{18}$ O bottom value was that of the reservoir water before labelling
- o **HL** was **not identified** here..

Results and discussion (3)

Intensive period 2 (July 25-27th2010)


Plant results (from 2 to 8 am)


- Very low transpiration rate
- $\delta^{18}O_{c} > \delta^{18}O_{c}$

Soil results

(Day2 05:20)

- $\psi_s(-0.15 \text{ m}) > \psi_s(-0.60 \text{m})$ at 05:20
- Enrichment at 15 20 cm (05:20)

Results and discussion (4)

Intensive period 2

 What about x, the contribution of hydraulically lifted water to soil layer (15–20 cm) water?

$$\delta_{(15-20)5:20_day2} = x \delta_{labelled_water} + (1-x) \delta_{(15-20)17:15_day1}$$

$$x = 5\% (+/-1\%)$$

(precision computed from Phillips and Gregg, 2001)

Summary and perspectives

- HL estimated to account for up to 81% of the water used during the following day by the vegetation (Kurz-Besson et al., 2006). The local water balance could be in some cases deeply impacted by HL
- **Evidence for** *HL* **on intensive period 2, but contributing to only 5%** of soil layer 10-25 cm
- Perspectives ..
 - Another plant cover? (e.g. maize)
 - o **fully controlled** conditions (20 m³ climatic chamber)
 - Modelling (SiSPAT-Isotopes)

Thank you!

> Nocturnal condensation or Hydraulically Lifted water??

