

Earlier onset of spring: quantifying from temperature series in Stockholm and northern China

Cheng QIAN^{*1}, Congbin FU^{1, 2}, Zhaohua WU³, Zhongwei YAN¹ *E-mail: gianch@tea.ac.cn

1. Key Laboratory of Regional Climate-Environment Research for Temperate East Asia. Institute of Atmospheric Physics. Chinese Academy of Sciences. Beijing. China 2. Institute for Climate and Global Change Research. Naniing University. Naniing

3. Department of Earth. Ocean and Atmospheric Science & Center for Ocean-Atmospheric Prediction Studies. Florida State University. Tallahassee, USA

1. Introduction

Changes in the timing of seasons, especially the spring season, under alobal warming have gained much attention worldwide in recent decade or so. The timing of the spring season has a large influence on natural ecosystems and human activities such as agricultural planning, including spring sowing and cultivation of plantation and poultry, and spring tourism. Since temperature records are easily available and comparable across a larger area, in this study we quantifying trends in the timing of climatic spring onset, as well as its possible causes from both long-term and shortterm perspectives and exploring possible predictors for the timing of spring onset. The target region is chosen in Stockholm, where one of the longest climate series in the world, i.e., the daily temperature records back to 1756 was recorded, and northern China, where a significant warming trend prevailed during the last 50 years.

2. Data and Methods

Data: (1) observed daily mean surface air temperature (SAT) records at Stockholm, Sweden from 1756 to 2000, which has been homogenized (Moberg et al. 2002); (2)The China homogenized historical daily mean SAT datasets of 1951-2004, from which 72 stations in northern China (north of 35° N).

Methods: the adaptive and temporally local time-series analysis tool -Ensemble Empirical Mode Decomposition (**EEMD**) (Wu and Huang, 2009) is applied to filter out high frequency fluctuations (HF) and obtain the annual cycle and longer timescale component (ALC) from a daily mean SAT series (Fig. 1). The timing of spring onset is uniquely determined as the date of the first intersection of 5°C threshold (widely adopted) with the low-frequency part of daily SAT series containing the annual cycle and longer timescale components (Fig. 2).

3. From long-term perspective: Stockholm case

1757 1787 1817 1757 1787 1817 1847 1877 1907 1937 1967 1997 1847 1877 1907

Fig. 4 (a-c) Low-pass filtering of NAO and mean temperature series using EEMD method. (d) 21-year running correlation between spring onset and Jones NAO index. Luterbacher NAO index and mean temperature.

4. Recent decades: northern China case

Winte

õ

Background: A tendency of warming shift for the whole seasonal cycle under global warming.

Fig. 5 Comparisons of mean ALC for 1961-1970 (blue) and that for 1998-2007 (red).

References

Fig. 6 (a) mean spring onset date: (b) warming trend (°C/decade); (c) trend in spring onset (davs/49years): (d) trend in spring onset due to change in the annual cycle only.

Conclusion: The spring onset has advanced all over northern China, but more significant in the east than in the west part of the region, which can be explained by opposite changes in the spring phase of the SAT annual cycle (the yearly period component, which is the dominant component in the SAT series outsides the tropics). Change in the spring phase of annual cycle explains 40-60% of the spring onset trend and is attributable to a

Trends in the timing of spring onset and Potential Predictor

weakening Asian winter monsoon. (Qian et al. 2011)

1. Qian C, C Fu, Z Wu, and Z Yan. 2009: On the secular change of spring onset at Stockholm. Geophys. Res. Lett., 36, L12706, doi: 10.1029/2009GL038617 2. Qian C, C Fu, Z Wu, and Z Yan, 2011; The role of changes in the annual cycle in earlier onset of climatic spring in northern China, Adv. Atmos. Sci., 28(2), 284–296. 3. Wu Z, and N E Huang, 2009: Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41.

1961-1970

1998-2007

Jul Month

