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Introduction & Motivation umversitétﬂ

« Temporal information from GRACE

1. Since 2002, GRACE has
provided valuable information
about mass redistribution within
the Earth system.

2. TWS anomalies represent
Integrated mass over global
vertical columns, caused by

« The Earth's interior
* |Its surface g e —— — (711
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Time series of the Total Water Storage (TWS) maps,

:> derived from the processing of ITG2010 solutions
Challenge: Separation of the TWS = F(,s) = [f,f,... f,]
observed signals into their e .

original sources number of solutions number of grid points
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Separation schemes A

» Separation of signal and data noise,
> E.g.isotropic (Jekeli, 1981) and non-isotropic filters (Kusche, 2007)

» Statistical approaches such as PCA/EOF (e.g. Wouters and
Schrama, 2007) and ICA (e.g., Frappart et al., 2010 )

» Separation of mass flux patterns from different compartments of the
Earth system,

» Reduce the unwanted observed quantities by applying dedicated
models e.g. atmosphere, ocean (Flechtner, 2007)

» Inversion techniques, using dynamical theories (e.g. sea level
equation) and fitting them to multi-mission data (e.g. GRACE/Jason),
(see e.g. Kusche et al., 2011 (talk, Room 18, at 09:30), Rietbroek et al.,
2011 (Poster Hall XL Nr. 50)), for estimation of GIA (e.g. Wu et al.,
2010)
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» ldentification of physically meaningful signals within the same
compartment, e.g. PCA/EOF, REOF, CEOF, MSSA (based on
second order statistics) and ICA (based on higher order statistics)
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Statistical Pattern Extraction umversitétﬂ

|
> PCA o
» 1S the most widely used method which works based on m
eigenvalue decomposition (Lorenz,1956). .
m |
F(ts) = > PCs,(t)EOF (s)=PE' o
k= [ |
» Benefits: :
» De-correlates the dataset by decomposing it to the orthogonal
components.

» Covariance matrix of any subset of retained
components is always diagonal.
» Captures a maximum variability within a few components.

> Limitation:

» Physical process are not necessarily orthogonal.

» Capturing the maximum amount of variance goes with the
'mixing problem' which might lead to misinterpretation.
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Why ICA Decomposition? umversitétﬂ

1. TWS variation is a hydrological parameter associated to physical

pProcesses.
» TWS time series contain a significant level of non-Gaussianity.
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0 —Gaussian
> Kurtosis: E(x")/E(x?)?-3{<0 — Sub —Gaussian
>0 — Super —Gaussian

—— Higher order statistics can be incorporated in the decomposition
procedure. (PCA, REOF, CEOF; MSSA and etc. only use the second order statistics)
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Why ICA Decomposition? umvermgn;}

Statistically:

» Independence is stronger statistical hypothesis than
uncorrelatedness (e.g. in PCA)
» Independence implies uncorrelatedness but the reverse is=
not always true! -
—— For non-Gaussian signals, maximally independent signals IER
are also likely approximately uncorrelated.

Our working hypothesis:

» If different phenomena (‘sources') come from different physical
processes, they are statistically mutually independent.

—— Independent patterns, are more likely to be related to
‘independent physical processes‘ than dependent
patterns. ——= ICA
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2 Steps ICA algorithm umversitétﬂ

Stepl: Perform PCA, to decorrelate the observations.
Fig)  =FE"

Step2: Define a suitable rotation to optimize an independence
criterion.

F(ts) =PRR'E'
» Selected criterion: fourth order cumulant: if: X = E(X)

C Xy, Xp: X3 X,) = E(X X, XX, ) — E(X,X,) E(R.X,)
S _— . - (Cardoso, 1998)
—E(XX;)E(X,X,) —E(XX,)E(X,X,)

> Spatial ICA: Rotation of EOFs: x=E, R
k<n,m

» Temporal ICA: Rotation of PCs: x=P,R

k
——— |ICAcriterion — f(Xx) = Max[ ZC(XJ- )ZJ (Forootan and Kusche, submited)
j=1
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» PC1, PC2, PC3 and PC4 contain annual cycles.

» PC3 and PC4 are contaminated with semi-annual cycles.

» PC5 and PC6 contain semi-annual cycles.

» Spatial patterns are repeated in several components which makes the

interpretation difficult.
(Data is pre-processed using Kusche, (2007)'s DDK2 filter)
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Results of decomposing ITG2010
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Results & Discussion umversmﬂ

|
PCA is suitable for dimension reduction. o

|
PCA's orthogonality constrain is restrictive for interpretation purpose. *

|
For non-Gaussian signals, ICA does what we want PCA to do for :
Gaussian Signal.

» 2 steps ICA algorithm
» PCA, as an initial step, improves both the computational and
interpretability of the decomposition procedure.
» Rotating the components towards independence.

Using a simulation, ICA showed a better performance with compare
to the ordinary PCA to separate non-Gaussian signals.

Within the real case, we believe that ICA improved the PCA's
performance.

ICA is not able to separate high correlated physical components.
» Those separations should be investigated using different approaches.
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Thank you for your attention
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