

A non-Gaussian decomposition of GRACEderived time-variable gravity signals, using Independent Component Analysis (ICA)

Ehsan Forootan and Jürgen Kusche
Astronomical Physical & Mathematical Geodesy, Bonn University
forootan@geod.uni-bonn.de

EGU General Assembly 2011, 08.04.2011

Table of Contents

- > Introduction & Motivation
- Statistical pattern extraction
- PCA/EOF method
- Incorporate non-Gaussianity information in the frame of ICA
- > Results & Discussion

Introduction & Motivation

Temporal information from GRACE

- 1. Since 2002, GRACE has provided valuable information about mass redistribution within the Earth system.
- 2. TWS anomalies represent integrated mass over global vertical columns, caused by
 - The Earth's interior
 - Its surface
 - Atmosphere

Challenge: Separation of the observed signals into their original sources

Time series of the Total Water Storage (TWS) maps, derived from the processing of ITG2010 solutions

$$TWS = F(t,s)_{n \times m} = [f_1, f_2, ..., f_m]$$
 number of solutions number of grid points

Separation schemes

- Separation of signal and data noise,
 - E.g. isotropic (Jekeli, 1981) and non-isotropic filters (Kusche, 2007)
 - > Statistical approaches such as PCA/EOF (e.g. Wouters and Schrama, 2007) and ICA (e.g., Frappart et al., 2010)
- Separation of mass flux patterns from different compartments of the Earth system,
 - Reduce the unwanted observed quantities by applying dedicated models e.g. atmosphere, ocean (Flechtner, 2007)
 - ➤ Inversion techniques, using dynamical theories (e.g. sea level equation) and fitting them to multi-mission data (e.g. GRACE/Jason), (see e.g. Kusche et al., 2011 (talk, Room 18, at 09:30), Rietbroek et al., 2011 (Poster Hall XL Nr. 50)), for estimation of GIA (e.g. Wu et al., 2010)
- ➤ Identification of physically meaningful signals within the same compartment, e.g. **PCA/EOF**, **REOF**, **CEOF**, **MSSA** (based on second order statistics) and **ICA** (based on higher order statistics)

Statistical Pattern Extraction

> PCA

➤ is the most widely used method which works based on eigenvalue decomposition (Lorenz, 1956).

$$F(t,s)_{n \times m} = \sum_{k=1}^{m} PCs_{k}(t)EOF_{k}(s) = PE^{T}$$

Benefits:

- ➤ De-correlates the dataset by decomposing it to the orthogonal components.
 - Covariance matrix of any subset of retained components is always diagonal.
- Captures a maximum variability within a few components.

> Limitation:

- Physical process are not necessarily orthogonal.
- ➤ Capturing the maximum amount of variance goes with the 'mixing problem' which might lead to misinterpretation.

Simulation Status

-40 -30

-20

PCA's Separation Performance

Why ICA Decomposition?

- TWS variation is a hydrological parameter associated to physical processes.
 - TWS time series contain a significant level of non-Gaussianity.

> Kurtosis:
$$E(x^4)/E(x^2)^2 - 3$$
 $\begin{cases} 0 \rightarrow \text{Gaussian} \\ < 0 \rightarrow \text{Sub} - \text{Gaussian} \\ > 0 \rightarrow \text{Super} - \text{Gaussian} \end{cases}$

Higher order statistics can be incorporated in the decomposition procedure. (PCA, REOF, CEOF; MSSA and etc. only use the second order statistics)

Why ICA Decomposition?

2. Statistically:

- Independence is stronger statistical hypothesis than uncorrelatedness (e.g. in PCA)
 - Independence implies uncorrelatedness but the reverse is not always true!
 - For non-Gaussian signals, maximally independent signals are also likely approximately uncorrelated.

3. Our working hypothesis:

- ➤ If different phenomena ('sources') come from different physical processes, they are statistically mutually independent.
 - Independent patterns, are more likely to be related to 'independent physical processes' than dependent patterns. ICA

Step1: Perform PCA, to decorrelate the observations.

$$F(t,s)_{n\times m} = PE^{T}$$

2 Steps ICA algorithm

Step2: Define a suitable **rotation** to optimize an **independence** criterion. $E(t,s) = DDD^{T}E^{T}$

$$F(t,s)_{n \times m} = PRR^{T}E^{T}$$

> Selected criterion: fourth order cumulant: if: $\bar{x} = E(x)$

$$\begin{split} C(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4) &= E(\overline{\mathbf{x}}_1\overline{\mathbf{x}}_2\overline{\mathbf{x}}_3\overline{\mathbf{x}}_4) - E(\overline{\mathbf{x}}_1\overline{\mathbf{x}}_2)E(\overline{\mathbf{x}}_3\overline{\mathbf{x}}_4) \\ &- E(\overline{\mathbf{x}}_1\overline{\mathbf{x}}_3)E(\overline{\mathbf{x}}_2\overline{\mathbf{x}}_4) - E(\overline{\mathbf{x}}_1\overline{\mathbf{x}}_4)E(\overline{\mathbf{x}}_2\overline{\mathbf{x}}_3) \end{split} \tag{Cardoso, 1998}$$

> Spatial ICA: Rotation of EOFs: $x = E_k R$

$$k \prec n, m$$

ightharpoonup Temporal ICA: Rotation of PCs: $x = P_k R$

ICA criterion
$$\rightarrow f(\mathbf{x}) = Max \left(\sum_{j=1}^{k} C(x_j)^2 \right)$$
 (Forootan and Kusche, submited)

ICA's separation performance

PCA decompositiom ITG2010

- PC1, PC2, PC3 and PC4 contain annual cycles.
- > PC3 and PC4 are contaminated with semi-annual cycles.
- PC5 and PC6 contain semi-annual cycles.
- Spatial patterns are repeated in several components which makes the interpretation difficult.

(Data is pre-processed using Kusche, (2007)'s DDK2 filter)

Results of decomposing ITG2010

2007

Results & Discussion

- > PCA is suitable for dimension reduction.
- PCA's orthogonality constrain is restrictive for interpretation purpose.
- For non-Gaussian signals, ICA does what we want PCA to do for Gaussian Signal.
 - 2 steps ICA algorithm
 - PCA, as an initial step, improves both the computational and interpretability of the decomposition procedure.
 - > Rotating the components towards independence.
- Using a simulation, ICA showed a better performance with compare to the ordinary PCA to separate non-Gaussian signals.
- ➤ Within the real case, we believe that ICA improved the PCA's performance.
- ICA is not able to separate high correlated physical components.
 - Those separations should be investigated using different approaches.

EGU 2011, Session G1.2/EMRP4: Mathematical methods in the analysis and interpretation of potential field data and other geodetic time series

Thank you for your attention

- Main references:
- 1. E. Lorenz, 1956. Empirical Orthogonal Function and Statistical Weather Prediction, Tech. Rep. Science Report No. 1 Statistical Forecasting Project, MIT, Cambridge U.S.A.
- 2. J.-F. Cardoso, 1998. Blind Signal Separation: Statistical Principles, Proceedings of the IEEE DOI 10.1109/5.720250 86 (10), 2009--2025, ISSN 0018-9219.
- 3. E.Forootan and J.Kusche, Separation of Global Time-variable Gravity Signals into Maximally Independent Components, submitted in J.Geodesy.

