

European Geosciences Union General Assembly 2011 Vienna | Austria | 03 – 08 April 2011

SIMULATING THE INTERANNUAL VARIABILITY OF THE ADRIATIC SEA ECOSYSTEM (Work in progress)

Emanuela Clementi (1) - Marco Zavatarelli (1) - Paolo Oddo (2)

(1) University of Bologna (IT)(2) INGV Bologna (IT)

INTRODUCTION & OBJECTIVES

(EU-FP7) project uses predictive models to explore the impacts of both climate (global warming, ocean acidification) and human induced drivers (fishing, pollution, invasive species and eutrophication) in 7 European seas (plus Benguela).

Adriatic Sea Activities Focus on climate drivers:

- Hindcast the 20th Century ecosystem dynamics
- Predict 21st Century ecosystem dynamics

under unified consensus (IPCC) scenarios of climate change.

Focus on Human induced drivers:

- Expand modelling system to representation of higher trophic levels (with fishery pressure) and organic pollutants

MEECE NUMERICAL SIMULATIONS CARRIED OUT

- > 2001-2005 to validate the model & compare with satellite data
- > 20th century: 1980-1990 to be extended to 2000
- 21st century: 2080-2088 to be extended to 2100

<u>Physical Model</u> = POM (Princeton Ocean Model)

3D oceanographic model, sigma coordinates, free surface, time step splitting: external 2D mode (time step 5s.); internal 3D mode (time step 500s.)

Biogeochemical Model = BFM (Biogeochemical Flux Model)

- physiological and population processe of lower trophic levels
- 3 main trophic groups: primary producers, predators, decomposers (standard organism)
- functional group biomass defined by internal constituents (chemical currencies): Carbon, Nitrogen, Phosphorus and Silicon (only for diatoms)

At each model time step, hydrodynamics provides BFM with information about the physical environment (T, S, V..)

Adriatic Sea implementation

GRID and BATHIMETRY

- Horizontal resolution: 2 kms, 27 sigma vert. levels
- Model bathymetry from US Navy DBDB1 (1 min) with modifications in shallow areas

INITIAL CONDITIONS

Biogeochemistry

- Nutrients, Phytoplankton and Oxygen: estimated from ABCD dataset [Zavatarelli et al., 1998] winter averages: vertically variable, horizontally homogeneous
- Others state Variables: const. values provided by literature

Physics

Restart from physics only simulations.

OPEN BOUNDARY CONDITIONS

Physical conditions, South to Otranto channel, Nesting with the High resolution (1/16°) NEMO based Mediterranean Sea Model (Oddo et al. 2009)

High frequency surface forcing (6 hours) data are derived from the atmospheric component of a two way interactively coupled EBU-POM Model, computed with dynamic downscaling of global scale climate model.

Atmospheric component: Eta Model (EBU=Eta Belgrade Univ.) has 0.25 horizontal resolution (~30km)

Hindcast climate integration: 1961-2000 (under observed CO2 concentration)
Future climate integration: 2001-2030 + 2071-2100 (under A1B IPPC CO2 emission scenario).

The model has been forced with river runoff and nutrient load deduced from:

- Daily observations (where available)
- Monthly climatologies (perpetual year)
- Interannually varying monthly averages, from an hydrological model of the Mediterranean watershed forced with 20th century re-analysis (Ludwig et al. 2009) or 21st century A1b scenario (Ludwig et al. 2010)

		SIMULATIONS 20 th century	SIMULATIONS 21 st century
PC F	O RIVER RUNOFF	Observed daily averages	
отн	IER RIVERS RUNOFF	Monthly climatologies (perpetual year) or Monthly averages (interannually varying) from an hydrological model	Monthly averages (interannually varying) from an hydrological model under A1b scenario
AI NUTR	LL RIVER RIENT LOAD	Annual estimates or Monthly averages (interannually varying) from an hydrological model	Monthly averages (interannually varying) from an hydrological model under A1b scenario & the "Business as Usual" (BaU) assumption

RUN 2001-2004: MODEL VALIDATION

Chlorophyll-a monthly mean averages over the light e-folding depth MODEL RESULS vs. SATELLITE DATA

Standard Deviation [mg Chl/m³]

Chlorophyll-a concentrations averaged over the light e-folding depth

- Qualitative agreement between model results and satellite measurements

- Model represents spatial variability (higher concentrations in North-West region that decease in deeper areas)

- Overall overestimation of satellite data in particular during winter bloom

RUN 2001-2004: MODEL VALIDATION

Sea Surface Temperature daily averages MODEL RESULS vs. SATELLITE DATA

MODEL

- overestimates satellite data (+0,6°C)
- correlation coefficient = 0.97
- variability in phase with data

Standard Deviation [°C]

RIVER RUNOFF & NUTRIENT LOAD 1980-2000

CC

CC

[s) Е

300 1983-1990 250 NPP [mgC/m²d] 120 100 50 1983 1984 1985 1986 1987 1988 1989 1990

NET PRIMARY PRDUCTION TIME SERIES [mgC/m²d]

[m³/s]

Primary Production time series:

monthly averages decrease in the simulated period, in particular at the end of the 80's following the riverine nutrient load trend

(CC)

Map of Primary Production trend: negative values in the entire basin

RESULTS 20th + 21st CENTURIES: SEA SURFACE TEMPERATURE & SALINITY

RESULTS 21st CENTURY: CHLOROPHYLL

CC

RESULTS 21st CENTURY: PRIMARY PRODUCTION

(CC)

<u>Original data</u>: very <u>high</u> values used for simulation 2080-2088 (Previous 2 slides)

<u>Corrected data</u> on the basis of the differences between 20th century observations (Po river) and corresponding hydrological model simulations.

To be used as forcing function in the 21st century simulation.

- The model generally overestimates primary producers and temperature but seasonal cycle in good qualitative agreement

- Primary production patterns are crucially linked to the load based nutrient inputs

- The reduction of Phosphate sensibly affects the lower trophic levels

- Uncertainty in the 21st century river runoff and nutrient load must be taken into account