

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology





# Troposphere delay modeling in VLBI and GNSS analysis

#### Johannes Böhm, Peter Steigenberger, Robert Heinkelmann, Harald Schuh





EGU2011-8013

## Zenith delay - clock - height

 $D_{L}(e) = D_{z} \cdot m(e)$  $D_{L}(e) = D_{z}' \cdot m(e)'$ 

Partials:clock:= 1height:= sin(e)zenith delay $\approx$  m(e)



# Rule of thumb

• The station height error is about 1/5 of the troposphere delay error at the lowest elevation (5°). (*MacMillan and Ma, 1994*)

## **IERS** Conventions



# **Mapping Functions**

- empirical functions (doy,  $\varphi$ ,  $\lambda$ , h)
  - GMF Global Mapping Functions (Böhm et al., 2006)
- from numerical weather models (6-h time series)
  VMF1 Vienna Mapping Functions (Böhm et al., 2006)

# Height Changes: bias and std.dev. GMF vs. VMF1 (hyd.)



mm

mm

# A priori hydrostatic zenith delay

#### observations

- in situ measurements
- numerical weather models (6-h time series)
- empirical functions (doy,  $\varphi$ ,  $\lambda$ , h)
  - GPT Global Pressure/Temperature (Böhm et al., 2007)

# Height Changes: bias and std.dev. GPT vs. ECMWF

(Fund et al., 2011)



# Height velocity in mm/year: GPT vs. ECMWF



9

### Hydrostatic zenith delay errors



## Repeatabilities of station heights



no atmospheric loading correction

a posteriori loading correction (L. Petrov)

(Steigenberger et al., 2009)



# AN vs. FC Height std.dev. after 42 hours

#### VMF1 hyd.

#### VMF1 wet



## Recommendation

- It is recommended to use at least VMF1 and a priori hydrostatic zenith delays from numerical weather models if geophysical signals are to be investigated.
- ... or ...

## Ray-traced slant delays

- Successful applications:
  - (Hobiger et al 2008, EPS) for PPP solutions w.r.t. GMF
  - MacMillan/Petrov for VLBI w.r.t. VMF1
- Estimation of residual zenith delays (and gradients) still necessary

# CONT08 - Baseline length repeatabilities w.r.t. ECMWF/VMF1



Zenith delays estimated No gradients estimated

Ray-traced delays better for 33 baselines

ECMWF/VMF1 better for 19 baselines

More details this afternoon by Vahab Nafisi at 15:00 in Session G5.2/AS4.18!

# VLBI2010 Simulations turbulence vs. clocks



17

# Conclusions (1)

- Troposphere delay modeling is critical for the accuracy of space geodetic results ...
- and simulations based on turbulence show that it will stay the critical factor in future, at least for microwave techniques.

# Conclusions (2)

 Ray-tracing through numerical weather models has shown some promising results, but NWMs are not yet accurate enough to solve all problems related to troposphere delay modeling.

# Thanks for your attention!

Acknowledgement: P 20902-N10





### Troposphere path delays



## Contents

- IERS Conventions
- Effects on station heights
- Ray-traced slant delays for CONT08
- VLBI2010 Simulations
- Conclusions

## Vienna Mapping Functions VMF1



## Vienna Mapping Functions VMF1



analytical functions