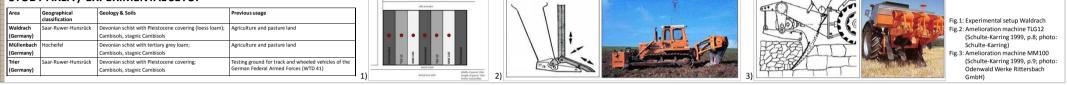
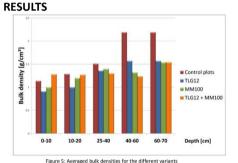
Universität Trier

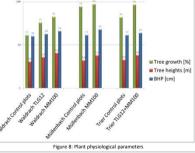

bodenkunde

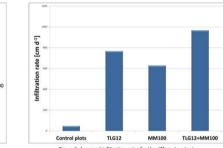
Marco Hümann¹, Raimund Schneider¹, Gebhard Schüler² and Christoph Müller¹

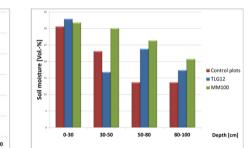
INTRODUCTION

It is well accepted that the climatic change is proceeding and many countries have increased the interest in afforestation of arable soils due to surplus agricultural production or ecological problems. However, the existing soils relevant for afforestation often possess poor properties for an effective growth of plants (marginal earning sites) and are in many cases poor in nutrients, extremely dry or very wet as well as compacted and skeletal. Deep loosening measures as amelioration methods are suited to increase the water availability and water storage capacity and to enhance soil physical properties.


STUDY AREA / EXPERIMENTAL SETUP




METHODS


- Sampling and pedological description of the different soil profiles
- Determination of soil physical parameters (bulk density, infiltration rate, water storage capacity, percentage of soil particles >2mm)
- Investigations and measurements of plant-physiological parameters (number of accrued trees, tree heights and amount at breast height)
- →Calculation of current stem- and hectare volumes and profits (14 years after experimental setup)
- →Calculation of predicted stem- and hectare volumes and profits after one turnover (120 years)

s Figure 6: Averaged infiltration rates for the different variants			Figure	Figure 7: Means of soil moisture in different depths; Waldrach test-site 4 years after setup				
		Waldrach		Müllenbach		Trier		
	Check-Up	TLG12	MM100	Check-Up	MM100	Check-Up	TLG12+MM100	
Tree accretion [%]	17	33	45	78	88	44	86	
Tree height [m]	4,1	5,2	6,5	4,4	5,7	4,5	5,8	
Amplitude at breast height [cm]	16	18	21	17	23	17	19	
Timber volume [m³/ha]								
current (after 14a)	5	17	38	20	51	21	67	
predicted (after 120a)	845	1.097	1.238	860	1.251	861	1.261	
Profits from mixed timber [Euro/ha]								
current (after 14a)	350	1.190	2.660	1.400	3.570	1.470	4.690	
predicted (after 120a)	58.150	78.790	85.660	59.200	86.570	59.270	87.270	
	Table	1: Plant physiologi	cal parameters and o	alculations				
	Tree accretion [%] Tree height [m] Amplitude at breast height [cm] Timber volume [m?/ha] current (after 14a) predicted (after 120a) Profits from mixed timber [Euro/ha] current (after 14a)	Check-Up Tree accretion [%] 17 Tree height [m] 4,1 Amplitude at breast height [cm] 16 Timber volume [m ³ /ha] 5 predicted (after 14a) 5 Profits from mixed timber [Euro/ha] 845 current (after 14a) 350 predicted (after 12a) 58.150	Waldrach Check-Up TLG12 Tree accretion [%] 17 33 Tree height [m] 4,1 5,2 Amplitude at breast height [cm] 16 18 Timber volume [m ³ /ha]	Waldrach Waldrach Check-Up TLG12 MM100 Tree accretion [%] 17 33 45 Tree height [m] 4,1 5,2 6,5 Amplitude at breast height [cm] 16 18 21 Timber volume [m³/ha]	Waldrach Müllent Waldrach Müllent Check-Up TLG12 MM100 Check-Up Tree accretion [%] 17 33 45 78 Tree height [m] 4,1 5,2 6,5 4,4 Amplitude at breast height [cm] 16 18 21 17 Timber volume [m ³ /ha] current (after 14a) 5 17 38 20 predicted (after 120a) 845 1.097 1.238 860 Profits from mixed timber [Euro/ha] 350 1.190 2.660 1.400	Waldrach Müllenbach Waldrach Müllenbach Check-Up TLG12 MM100 Check-Up MM100 Tree accretion [%] 17 33 45 78 88 Tree height [m] 4,1 5,2 6,5 4,4 5,7 Amplitude at breast height [cm] 16 18 21 17 23 Timber volume [m ³ /ha]	Waldrach Müllenbach Check-Up TLG12 MM100 Check-Up Tree accretion [%] 17 33 45 78 88 44 Tree height [m] 4,1 5,2 6,5 4,4 5,7 4,5 Amplitude at breast height [cm] 16 18 21 17 23 17 Timber volume [m ³ /ha]	

CONCLUSION

- Deep loosening is very appropriate to enhance the soil physical properties sustainably and thus the basic requirements for a fast and healthy plant growth.
- The trees on the ameliorated lots develop verifiably faster (higher), thicker and in a greater extent. Hence, an one-time deep loosening before the afforestation is advisable.
- The investment costs are already amortized after a short developing time. Higher earnings can be expected in the following years on the sustainably optimized areas.
- A large-scale appliance of deep loosening as amelioration method can lead to a successful afforestations. Avoidable costs, caused by high fault rates, can be prevented.

¹University Trier, FB VI, Department of Soil Science, Trier, Germany ²Research Institute for Forest Ecology and Forestry Rhineland-Palatinate, D-67705 Trippstadt, Germany

CONTACT

For further information please contact: Dipl. Environmental Scientist Marco Hümann Soil Science Dept.; Fac. of Geosciences University Trier – Campus II / D-54286 Trier m.huemann@uni-trier.de

This study has received European Regional Development Funding through INTERREG IVB NWE (ForeStClim-Project; www.forestclim.eu)