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Abstract

Knowledge and understanding of sea level variability on varying spatial and temporal

scales remains a key field of research in the earth sciences. Given the complexity of the

earth system and its feedbacks, many attempts have been made to produce simplified

models of this variability and there remains a potential for probabilistic and transpar-

ent data-driven techniques to further our understanding in this field. Here, a fuzzy rule-

based approach, a linguistic decision tree, has been applied to very different problems

in sea level science: the short-term forecasting of storm surge in the North Sea, and the

replication of annual mean sea level variability on a local scale. The model’s merits

are proven in the storm surge problem, displaying comparable accuracy to alternative

methods, with two benefits. Firstly, the model gives probabilistic estimates of the storm

surge. In addition, statistically significant IF-THEN rules produced by the algorithm can

be interpreted linguistically and are found to be consistent with our understanding of

the physical system. The same probabilistic and transparent approach is then applied

to the mean sea level problem. The algorithm identifies the data fields providing most

information about the system and the rules can be interpreted to identify key drivers of

sea level variability.

1 Decision tree model
The approach here is to apply a probabilistic decision tree algorithm1, de-

noted LID3, to predict sea level variability. The decision tree algorithm is

fuzzy and lies in a Bayesian framework, where the attribute and target data

are ‘fuzzified’ into membership functions on descriptors, as shown in Fig-

ure 1, denotedmx(Fj) andmy(Ft) for the inputs and target respectively.
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Figure 1: Examples of descriptors (label sets) for one of the data

sets applied here.

Adatabase of i = 1, . . . , N data vectors with k number of input attributes,

xr=1,...,k and the target variable, y, are used to develop the tree structure. The

algorithm begins with the whole training database and identifies the input

variable that minimises entropy, maximising information gain, with respect

to the fuzzy descriptors of the target variable. The database is then split into

branches based on the descriptors of the most informative input variable so

that at each node, there exists a conditional probability distribution on the

descriptors of the target, denoted P (Ft=1|B), . . . , P (Ft=m|B). We assume a

non-informative prior P (Ft|B) = 1/m and where information is available in

the training database, use Bayes theorem to derive a conditional posterior

probability according to the standard frequentist model:

P (Ft|B) =
P (B|Ft)P (Ft)

P (B)
(1)
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i
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where DB denotes the training database.

Given a new instantiation of the attribute vector, xr, Jeffery’s rule of con-

ditioning is applied across all branches of the decision tree to obtain a prob-

ability distribution on the target descriptors:

P (Ft|x) =
∑

B

P (Ft|B)P (B|x) (3)

where

P (B|x) =
d∏

j=1

mxij
(Fij). (4)

2 Storm surge

2.1 Introduction
Storm surge remains a significant hazard to coastal communities around the

world. The timely and accurate forecast of storm surge has the potential to

save lives and protect property and assets, via flood warning alert, flood

defence and evacuation procedures. In some regions, operational systems

have been developed based on hydrodynamic forecast models which solve

the shallow-water equations. Although these models exhibit good accuracy

for lead times up to 48 hours, computational resources limit how accurate

the forecasts can be (for example by the parametrisation of sub-grid scale

processes and features) and the development of operational probabilistic

forecasts by ensemble. Furthermore, there are regions where fully-fledged

hydrodynamic models are too expensive to develop and run operationally.

Thus, the aim of this work is to investigate the applicability of an alterna-

tive data-driven approach to short-term forecasting of storm surge in a re-

gion where a fair comparison can be made against an operational forecast

model.

Figure 2: The North Sea site and data used.

The application site is the North Sea. The physical mechanism of storm

surge is relatively well understood here, where surge and tide progress

cyclonically around the basin as a coastally-trapped gravity wave. Storm

surge may be of external origin, entering the basin from the north, and / or

may developwithin the basin due to atmospheric (pressure andwind stress)

forcing. We chose the tide gauge site of Sheerness as our forecast location

as this gauge is used in flood warning procedures for the operation of the

Thames Barrier. Forecasts are made approximately 7.5 to 8 hours ahead us-

ing the following input data from tide gauges ‘upstream’ of the progressive

wave and meteorological data, as shown in Figure 2.
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Figure 3: Schematic of the components of total water level.

Skew surge is an alternative representation of storm surge to residualwa-

ter level and is used in this study. As shown in Figure 3, skew surge is the

difference between the observed maximum water level and the predicted

tidal high water for each tidal cycle and is considered a more useful metric

for flood forecasting.

2.2 Hindcasts
The decision tree algorithm is found to exhibit accuracy comparable to the

operational model and alternative data-driven techniques over all of the test

data. For the larger skew surge events identified from the upper 5th per-

centile of the test dataset, the LID3 algorithm is marginally worse than alter-

native methods but benefits from probabilistic forecasts. Figure 4 presents

the mean forecast value and standard error bars against observed skew

surge, focusing on the large positive skew surges in test dataset. This mea-

sure of uncertainty is highly beneficial to flood forecasters.

Table 1: Predictive Accuracy

Method All Data Upper 5th Percentile

AAE (m) RMSE (m) r2 AAE (m) RMSE (m) r2

Operational model 0.076 0.097 0.52 0.130 0.157 0.21

LID3 decision tree 0.078 0.107 0.42 0.168 0.203 0.06

LLS regression 0.073 0.102 0.45 0.147 0.192 0.09

ANN (2-layer) 0.070 0.096 0.49 0.139 0.181 0.14

SVR (RBF kernel) 0.071 0.100 0.71 0.147 0.189 0.22

Figure 4: Scatter plot of forecast against observed skew surge,

including standard error bars, from the decision tree algorithm.

2.3 IF-THEN rules
The decision tree algorithm determines a tree structure from the training

database. The fuzzy IF-THEN rules of the decision tree can be interrogated

and checked for consistency with our understanding of the physical system.

In this example, the decision tree identifies the key mechanisms for storm

surge generation given differing conditions along the north-east coast of the

UK and within the basin. The tree identifies external and internal sources of

storm surge generation.

Figure 5 is a schematic of one branch of the decision tree structure, show-

ing that the tree identifies the most informative attribute to be skew surge at

Whitby (the closest gauge to Sheerness), with additional information where

skew surge at Whitby can be described as central to small positive obtained

from the north-south wind speed data, the key driver in developing internal

surge.
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Figure 5: Decision tree structure for the central branches of the

decision tree, showing consistency with our understanding of the

key mechanisms of storm surge generation in the North Sea.

3 Mean sea level variability

3.1 Introduction
The decision tree algorithm is applied to the problem of determining local

scale variability in mean sea level. Mean sea level from monthly periods

and greater are of interest to science in the study of the effects of climate

variability and in determining the potential for significant sea level rise due

to atmospheric warming. The annual mean sea level (AMSL) varies consid-

erably around the long-termmean, with the determination of trends in long

records of key scientific interest. Here, we determine the success of the de-

cision tree model in filling data gaps in the tide gauge record at Brest, using

analogue tide gauge record (Newlyn) and atmospheric variables. Figure 6

presents the raw locally referenced AMSL records for Brest and Newlyn,

highlighting the correlation between the two records. The rate of change in

the AMSL, also presented, removes the data from the local reference frame.
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Figure 6: Raw locally referenced annual mean sea level (a) and rate

of change (b) for the Brest and Newlyn tide gauge data.

Although the Newlyn record is closely correlated with the Brest record,

there are periods where the rate of change in AMSL is considerably different

such as 2001-2002 and in addition, there appears to be a step change in the

Brest sea level record pre-war compared with post-war.

3.2 Hindcasts
We concentrate on the post-war record with the aim of hindcasting an artifi-

cial data gap, so we can quantify the algorithm’s success. The decision tree

model is used to forecast the rate of change in AMSL at Brest using the rate

of change in AMSL at Newlyn and the rate of change in various atmospheric

indices, which inform about large-scale variability such as basin-scale gyre

spin-up. The annual mean sea level is then reconstructed by forward and

backward integration from the start and end of the decade respectively, and

the mean value is taken as the hindcast AMSL, as shown in Figure 7.
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Figure 7: Forecast Brest annual mean sea level, reconstructed from

the rate of change forecast by the decision tree model, as a) a scatter

plot, and b) a timeseries, for four decades of test data.

Table 2: Predictive Accuracy
Method Rate of change MSL

RMSE (mm/yr) r2 RMSE (mm) r2

LID3 decision tree 12.6 0.923 14.5 0.871

3.3 IF-THEN rules
The fuzzy IF-THEN rules of the decision tree are interrogated to identify

key physical drivers of the local scale variability. Figure 8 presents the sta-

tistically significant (to the 90th percentile) branches of the decision tree, dis-

playing splitting of the training data into branches with negative, near zero

and positive year-to-year changes in mean sea level. It can be seen that most

information comes from theNewlyn tide gauge data, which is unsurprising.

Thereafter, the variability in mean sea level pressure at Brest is most infor-

mative, followed by the rate of change of atmospheric indices describing

north-south and east-west pressure gradients over the north-east Atlantic

basin.
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Figure 8: Schematic of the decision tree structure for the rate of

change in mean sea level at Brest.

4 Conclusions
It is encouraging that the data-driven model has comparative accuracy to

alternative methods in hindcasting skew surge in short-term forecasts. Sim-

ilarly, reasonable accuracy has been demonstrated in data gap filling for

long-term mean sea level variability. The natural error estimates given by

the decision tree model are highly beneficial to flood forecasters and high-

light uncertainties in mean sea level reconstruction.

The decision tree structure identifies key driving mechanisms in both

studies. In the forecasting of storm surge, the presence of surge at the clos-

est gauge to Sheerness is dominant in informing the magnitude and sign of

surge at Sheerness. However, the development of internal surge (from the

presence of northerly winds) and the presence of external surge (identified

in the timing of surge at the northerly gauges) are also identified. This gives

us confidence in the decision tree structure.

In the mean sea level problem, the decision tree model suggests that lo-

cal scale information from theNewlyn tide gauge data can be supplemented

with information from both local-scale and large-scale atmospheric pressure

variability; in particular those indices that relate to the north-south and east-

west pressure gradients experienced in the north-east Atlantic basin. These

indices may be an important data source for long-term sea level studies.
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