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Abstract

A rule-basedmodel, founded in Bayesian statistics, is applied to sea level prediction with two

aims. The data-drivenmodel uses information theory metrics to prioritise model inputs to cre-

ate a tree structure of IF-THEN rules. One aim of this method, therefore, is to interpret these

rules linguistically, to identify dominant relationships between input data and the data of in-

terest in the physical system and to identify key mechanisms for individual events. Secondly,

the model makes probabilistic predictions, and so we aim to utilise the natural error estimates

made by the method. Application of the model to sea level problems has been proven on the

problem of short-term forecasting of storm surge in the North Sea. The same probabilistic

and transparent approach is then applied to the prediction of local annual mean sea level from

atmospheric and analogue tide gauge data. The algorithm identifies the data fields provid-

ing most information about the system and the probabilistic nature of the model allows for a

natural data-driven error estimation in the predictions, which bounds the variability.

1 Decision tree model

An entropy based decision tree algorithm, referred to as LID31, is used here to
forecast water levels using available input data, for a range of sea level problems.
The decision tree algorithm is fuzzy and lies in a Bayesian framework, where the
attribute and target data are ‘fuzzified’ into membership functions on descriptors,
as presented in Figure 1 for one of the data sets used in this study, the skew surge
at Sheerness.
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Figure 1: Fuzzy label sets for skew surge at Sheerness

(11 no. uniformly-distributed).

The decision tree algorithm uses a ‘training’ subset of the available data to up-
date non-informative prior probabilities with posterior probabilities based on
past events. Given a new input data vector, the tree structure provides a probabil-
ity distribution of the target descriptions which can subsequently be ‘defuzzified’
into a real-valued forecast.

2 Storm surge

The applicability of the model is proven on the problem of short-term forecasting
of storm surge, in a well understood region (the North Sea). Storm surge may
enter the North Sea basin from the north, from external sources, or may develop
internally due to wind stress acting on the sea surface, progressing as a coastally-
trapped gravity wave cyclonically around the basin.

Table 1: Predictive Accuracy
Method All Data Upper 5

th Percentile
AAE (m) RMSE (m) r2 AAE (m) RMSE (m) r2

Operational model2 0.076 0.097 0.52 0.130 0.157 0.21
LID3 decision tree 0.078 0.107 0.42 0.168 0.203 0.06
LLS regression 0.073 0.102 0.45 0.147 0.192 0.09

Tide gauge data from the UK’s north-east coast and meteorological data (wind
speed and atmospheric pressure) are used as model inputs, to forecast storm
surge at Sheerness tide gauge on the Thames Estuary with approximately 7.5 to
8 hours lead-time. Data is taken from 1999 to 2008 (a total of 3332 complete data
vectors; 50% for training and 50% for testing).

Figure 2: Scatter plot of forecast against observed skew surge from (a) the decision tree

model, inc. standard error bars, and compared against (b) the operational forecast.

The decision tree structure can be schematised. For example, the tree identifies
the most informative attribute to be skew surge at Whitby (the closest gauge to
Sheerness), with additional information then obtained from the north-south wind
speed data, the key driver in developing internal surge.
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Figure 3: Decision tree structure for the central branches of the decision tree,

consistent with the key mechanisms of storm surge generation in the North Sea.

3 Mean sea level variability

3.1 Local Scale Variability

To investigate the success of the model to long timescale problems, the decision
tree model is applied to the problem of determining the forcing factors in local
scale variability of annual mean sea level. The model hindcasts the rate of change
in annual MSL at Brest from the rate of change in the annual MSL at Newlyn; lo-
cal atmospheric pressure and precipitation at Brest; and, large-scale atmospheric
indices with high correlation with the Brest data series. Coincident data from
1953 to 2006 is used, and the annual MSL reconstructed from the integral of the
rate of change.
The model exhibits comparable accuracy to alternative methods, with bias in

the reconstructed MSL giving rise to the majority of the error.

Table 2: Predictive Accuracy

Method Rate of change MSL

RMSE (mm/yr) r2 MAE (mm) RMSE (mm) r2

LID3 decision tree 10.1 0.91 -11.8 23.8 0.80

LLS regression 13.7 0.83 +7.8 18.1 0.84
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Figure 4: Hindcast rate of change in the Brest annual mean sea level and error

estimates made by the decision tree model, (a) as a scatter plot, and (b) as a timeseries

showing 1σ and 2σ errors.

The tree structure identifies the Scandinavia pattern, North Atlantic Oscillation
and East Atlantic / West Russia pattern as most informative of the atmospheric
indices, given the rate of change in annual MSL at Newlyn and local sea level
pressure at Brest.
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Figure 5: Schematic of the decision tree structure for the rate of change in annual MSL

at Brest (significant to 90
th %ile).

3.2 Regional scale variability

Going forward, the applicability of the rule-based method presented here will be
assessed in a study of the forcing factors in regional sea level variability, by apply-
ing the model to the hindcast of north-east Atlantic MSL variability, for example
from satellite altimetry.
Initially, annual MSL records have been investigated to identify whether a

timeseries exists that is of sufficient length to provide useful information from
the decision tree model. Tide gauge and atmospheric index data will be aver-
aged where similarities meet appropriate criteria; for example using correlation
coefficients, spatial proximity3 and hierarchical clustering4;5 methods to identify
optimal merging of data, as exemplified in Figure 6.
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Figure 6: Merging of tide gauge records may be determined by hierarchical clustering,

for example, by this dendrogram.

We hope to identify key relationships between the coastal tide gauge data,
large-scale atmospheric motions and the regional MSL in this statistically robust
method. In addition, it is hoped that natural error estimates can be made of the
hindcasts, to identify natural bounds of the regional MSL variability.

4 Conclusions

The data-driven model has comparative accuracy to alternative methods in hind-
casting both short-term (storm surge) and long-period (annual mean) sea level
variability. The model provides probabilistic forecasts, which subsequently pro-
vide natural error bounds on the predictions. This is particularly useful for flood
warning purposes but may aid our understanding of natural sea level variability
on longer timescales.
In addition, the model tree structure can be interrogated to ensure that the

model is consistent with our understanding of the physical system. This inter-
pretation of the IF-THEN rules may prove useful in determining the key drivers
of sea level variability in regions around the world.
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