Combining controlled-source seismology and local earthquake data to derive a consistent threedimensional model of the crust: Application to the Alpine region

Wagner M. ${ }^{1}$, Kissling E. ${ }^{2}$, Husen S. ${ }^{1}$, and Giardini D. ${ }^{1}$

${ }^{1}$ Swiss Seismological Service, ETH Zurich, Switzerland ${ }^{2}$ Institute of Geophysics, ETH Zurich, Switzerland

Development of a 3D crustal P-wave velocity model of the Alpine region for seismic applications, e.g. regional earthquake hypocenter location, including:
\rightarrow A realistic representation of the geology and (first order) discontinuities, e.g. Moho discontinuity.
\rightarrow A realistic representation of crustal velocities, i.e. 3D variations in seismic velocities.

after Waldhauser et al., 2002

Controlled-source seismology (CSS)

 vs. local earthquake tomography (LET)3D CSS model (Waldhauser et al., 2002)

3D LET model (Husen et al., 2003)

Husen et al., 2003

First order discontinuity, but only simplified velocities.

No first order discontinuity, but 3D seismic velocities.

*CSS: after Waldhauser et al., 1998 (best: $\pm 3 \mathrm{~km}$)
LET: class 0 ($\pm 5 \mathrm{~km}$), class 1 ($\pm 7 \mathrm{~km}$)

Agreement in CSS and LET Moho depth

Red line: $7.25 \mathrm{~km} / \mathrm{s}$ isoline
(LET Moho after Diehl et al., 2009)
Black line: interpolated CSS Moho depth

Discretization of LET Moho

- CSS Moho reflector elements
- LET Moho reflector elements (class 0)
- LET Moho reflector elements (class 1)

CSS data

- Alpine region is a very well-known study area.
- Existence of many profiles from the last decades.
- But there are gaps in between!

Comparison of CSS/LET Moho reflector elements

- LET data complement existing CSS information.
- Very good agreement in depth of CSS and LET Moho reflector elements!

criterion	class 0	class 1	total
all	420	2332	2752
$\Delta z \leq$ err $_{\text {LET }}+$ errcss	71	278	349
$\Delta z>$ err $_{\text {LET }}+$ errcss	0	4	4

Interpolated CSS/LET Moho

Black (dashed) line: CSS only Moho Red line: combined CSS/LET Moho

- Merging of CSS and LET data is possible based on their individual ability to identify the Moho discontinuity.
- Well-resolved CSS and LET Moho reflector elements are in good agreement.
- LET data will update and complement the previous existing CSS information to get a spatially more complete model of the Alpine crust.
- The larger number of Moho reflector elements allows for a more accurate definition of plate boundaries.

Outlook: 3D seismic velocity modeling

Thank you!

