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FIVE DECADES OF COMPUTER-BASED HYDROLOGIC

MANY REPORTS OF DIFFICULTIES IN MODE
IDENTIFICATION -

A true optimum set of (parameter) values was not
found in over 2 years of full-time work
concentrated on one watershed, although many
apparent optimum sets were readily obtained.”

Parameter Optimiza or Watershed Models

P. R. Jounston*aAND D. H. PILGRIM

School of Civil Engineering. University of New South Wales, Kensingion, N. S. W., Australia

A detailed search for the opumum values of the parameters of the Boughton model is described. The
Simplex and Davidon optimization methods were used. Rapid initial reductions in the objective function
lv achieved, but the solutions approached several widely different apparent opuma Alternate

use of different optimization methods and numerical and algebraic studies enabled considerable further
10 be made in the search. Much information was obtained on various aspects of parameter
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FIVE DECADES OF COMPUTER-BASED HYDROLOGIC

MANY REPORTS OF DIFFICULTIES IN MODEL

MANY ATTEMPTS TO IMPROVE MODEL IDENTIFICATION

A
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NOW RECOGNIZED BY “NSF AS A “GRAND CHALLENGE"

e do a poor job at reconciling
complex models with field data.

How do we improve this?
Challenge # 7:

expansion in the scof olume of field
observations generatt
Observatories, couple
the prospect of equally

enabled by the future dhvironmental
cyber-infrastructure, what radically novel
procedures and algorithms are needed to
rectify the chronic, historical deficit of the
past four decades in engaging complex
models (VHOM:s) systematically and
successfully with field data for the purposes
of learning and discovery and, thereby,
enhancing the growth of environmental

knowledge?
Hoshin Gupta
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SOLUTION <

WE NEED A THEORY OF DIAGNOSTIC EVALUATION

The theory should enable us to link
what we “see” in the data to
what is “right” and “wrong” with our

models.
Model < | > Data
4
v
Evaluation
We need to develop a
rigorous
. . DIAGNOSE & CORRECT
Diagnosis approach to model building !
Correction
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T FOR SUCH A THEORY

HYDROLOGICAL PROCESSES

Hydrol. Process. (2008)
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Reconciling theory with observations: elements of a

diagnostic approach to model evaluation

Hoshin V. Gupta,'* Thorsten Wagener? and Yugiong Liu!

! SAHRA, Department of Hydrology & Water Resources, The University of Arizona, Tucson AZ 85721

2 Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802

has clear and compelling diagnostic power. T
‘Predictions in Ungaged Basins’ initiative an
initiative, among others. It is suggested that 1
observational data are inadequate in the face
environmental science, and steps are proposed
This paper presents the concept of a diagnostic
signature indices that measure theoretically relg
issue of degree of system complexity resolvablg
facilitate uncertainty analysis, and can be readily
in ungaged basins. Copyright © 2008 John Wil

This paper discusses the need for a well-con;|
d
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N

|
oo MSE = — obs _ ~ym 0
MSE DECOMPOSES* yLor-ore]

INTO THREE STATISTICS MSE=(u, —u,) +(o, -0, ) +20,0, (1-r)
OF MODEL PERFORMANCE / f y

MSE = f'-'( Mean Error) + T(Variability Error ) + T( Linear Correlation )

: : :

Water Balance Variability Timing & Shape

2

Aw=(u, -, ) Ac=(c,-0, ) r

> >

* Decomposition of the Mean Squared Error & NSE Performance Criteria: Implications for Improving Hydrological M

odeling
Gupta, H.V,, H. Kling, Y.K. Yilmaz & G.F. Martinez-Baquero, Manuscript submitted to Journal of Hydrology, 2009. Hoshin Gupta



I PROBLEM 1.
CORRELATION
COMPONENT
DOMINATES

12

MSE

Z( Bias Error ) + F( Var Error )

+ #( Corr Error)

Cum Average of Normalized RMSE Fraction

Corr = 85-75 % of MSE - -
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ROBLEM 2.

MODEL PERFORMANCE
WILL BE SIGNIFICANTLY
OVER-ESTIMATED

MSE = (,um —u, )2 + (Gm -0, )2 +20 0, (1-r)

IDEAL OPTIMIZED
If we ensure U, =, ,.and 0, =0, But if we optimize on MSE without
the expected ‘best’ value for MSE constraining u_ & o, we will get:
is: MSE MSE
2ldeal = 2(1_7/;’deal) —ZOPmm:(l_roi:)tim)
obs obs
S& MSEOptim ~ (1+ r j MSEideal
2 1.0
MSE ™
MSEideal

MSE = < MSE
optim ideal

0.0

aSSUMES Fgeur ™~ Fopiim 0.0 4 1.0

@ @ iHoshinGupta




Ideal Value for «
mOBLEM 3. Optimized Value
VARIABILITY WILL ﬁ

BE UNDER-
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‘Optimal’ MSE is achieved when:
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In other words:

o_
ao=—"2-=r<1.0
O

obs

‘Optimal’ model will
underestimate
the observed variability
of the data
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'!OBLEM 4. THIS IS IN SPITE OF THE FACT THAT

PEAK FLOWS WILL ‘MSE’ IS SUPPOSED TO GIVE
BE UNDERESTIMATED BETTER FIT TO THE LARGE

regression against observed runoff

2]
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ra! '\'.,/'
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G
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c
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0 10 20
observed runoff [m3/s] Hoshin Gupta



16

ULT CAN BE MSE
FOR WORSE VALUE OF Point ‘B’ has O s
better ‘r and ‘@’

but worse MSE
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VERALL PROBLEM NS = 1 MSE

COMBINED EFFECT IS .,
NOT WELL CONTROLLED

+ 10% - 30%
Volume Balance Error Variability Error
1
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Water Balance Model
764 Catchments in Continental USA
Calibrated using NSE measure and SCE optimization algorithm

* A Continental Scale Diagnostic Evaluation of the ‘abcd’ Monthly Water Balance Model for the Conterminous US _
G.F. Martinez-Baquero & H.V. Gupta, Manuscript in preparation, 2009. Hoshin Gupta
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WHAT CAN use =5 Y[0" 070
WE LEARN
FROM THIS?

MSE = A’ + Ao’ +20 o, (1-p)

1. Optimization using MSE is equivalent to trying to match
THREE statistical properties of the data

Data Mean (15 moment) = U yps
Data Variance (27 moment) - 02,
Datfa Correlation structure - r

2. Two are properties of the data PDF, and the third is a
property of the spatial &/or temporal correlation structure

3. These are combined in a way that emphasizes certain aspects
of system behavior ... at the expense of others

4. For catchment modeling this can result in poor Water Balance
and under-estimation of Variability — both being important
system behaviors we wish to reproduce

GO Hostin cupe
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Gaussian CDF ~
BUT... (symmetrical) 60

WHY ONLY THESE Typical CDF of
THREE PROPERTIES ? (highly skewed) e

1. Data PDF’s are very rarely Gaussian !

2. The Model should also reproduce other statistical properties of
the data - particularly ones with hydrological significance !

3. Linear correlation ‘r’ aggregates different kinds of information
about spatio-tfemporal correlation sfructfure into ONE measure

THIS IS AN INEFFICIENT
WAY TO EXTRACT
INFORMATION !

GO Hostin our
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CHALLENGE OF
MODEL EVALUATION

TO DEVELOP

“SUFFICIENT STATISTICS”
OF MODEL PERFORMANCE

THAT ARE
“DIAGNOSTICALLY RELEVANT”

TO THE PROBLEM

20



’AGNOSTIC APPROACH INEORMATION 11
TO MODEL EVALUATION
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MODEL REFERENCED PATTERNS
SHOULD BE RECONCILED WITH
DATA REFERENCED PATTERNS
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WT CONSTITUTES A “
SIGNATURE Aquifer Well Test

BEHAVIOR ? Analysls
Matching the Theis type curve to Matching the Theis type curve to
observed drawdown on log-log plot observed drawdown on semi-log plot
10 1.2
1 e . _/
on B we Plot Area -
S . OW-1 I A
© L o
% 01 /‘ < . OW-2 -.l "’.
© ya . ows| A
0.01 4 [ | //
0.001 o b—=te”
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
t/irh2 t/rh2
Q ) S D = drawdown S = Storativity
r Q = pumping rate r = distance from well
D= AT W (u) where u= T T = Transmissivity t =time
/8 4 u = dimensionless time
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Example Build-up Curves Illustrating Various
ATURE

Effects
BEHAVIOR 7 ]
p“ "‘.'_:’-’(/
log J(t + At) / At) log [(t + At) / At) log [(t + At) 7 At)
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FAULT or NEARBY STRATIFIED LAYERS or LATERAL INCREASE IN
BOUNDARY FRACTURES WITH TIGHT MOBILITY

MATRIX
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IN CONCLUSION

THE PROBLEM OF INFERENCE PROBLEM OF DEVELOPING
(Reconciling Theory With Obs) €D DIAGNOSTIC SUFFICIENT
STATISTICS
The MODELING problem: The OBSERVATIONAL problem:
To explicitly state To extract from the data, INFO that
a) The Hypothesis to be tested a) Diagnostically characterizes system
b) The Tests that will unambiguously behavior
challenge the hypothesis. b) Supports or challenges the model
hypothesis
SR

The RECONCILIATION problem is to:

a) Make robust inferences regarding which aspects of the model
hypothesis are (are not) supported by the observations

b) Diagnostically quide improvements to the theory (model)

c) Suggest improvements in the acquisition of observations

GO Hostin cupe
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MODEL REFERENCED PATTERNS
ARE TO BE RECONCILED WITH
DATA REFERENCED PATTERNS

THEORY

Behaviors to
be Reproduced

EVALUATION OF
DIAGNOSTIC
SIGNATURES

Behaviors
that CANNOT
be Reproduced

Behaviors
Observed

DATA

NN

________ L.

CORRECTIONS
TO MODEL
HYPOTHESIS

./
Behaviors

that CAN
be Reproduced

A

i PARAMETER
ESTIMATION

GO Hostin cupie



2 ) Corrections to Model Hypothesis ... WRR 2009

WATER RESOURCES RESEARCH, VOL. 45, W00B13, doi:10.1029/2007WR006749, 2009

Estimating the uncertain mathematical structure of a water
balance model via Bayesian data assimilation

Nataliva Bulygina'~ and Hoshin Gupta'

Recen

v ... Correcting the Model EQUATIONS ...

the |

variables and input and output fluxes to be included have been selected, the major

hydrological processes and geometries of their interconnections have been identified, and
the continuity equation (mass balance) has = i sioi
identification problem that remains, then,
dependence of the output on the inputs g
model can be constructed for making sin
input-state-output behavior. The conventi a uncertain
some fixed (and possibly crroncous) math structure
We show instead how Bayesian data assi &input -
(construct) the form of these mathematics
consistent with macroscale measurements
state variables. The resulting model has 4

Hoshin Gupt
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Improving Model Identification:

Reconciling Theory with Observations &
The Problem of Sufficient Statistics

Evaluation should enable us to link
what we “see” in the data to
what is "right” and “wrong” with our models.

This task will require the active
collaboration of Process Scientists,
Theorists.

GO Hostin cupe



