

CONVERSION OF THE AEROSOL OPTICAL PROPERTIES FROM DRY TO AMBIENT

RH AT THE JRC-ISPRA STATION FOR ATMOSPHERIC RESEARCH

EUROPEAN COMMISSION

www.irc.ec.europa.eu

Mariana Adam, Jean-Philippe Putaud, Sebastiao Martins Dos Santos, Alessandro Dell'Acqua, and Carsten Gruening European Commission • Joint Research Centre, Institute for Environment and Sustainability

Contact: mariana.adam@irc.ec.europa.eu

Outline: the study envisages the aerosol hygroscopicity, described in terms of enhancement factors for scattering, absorption, extinction and backscattering

Goal: correction of optical properties to ambient conditions \rightarrow evaluate enhancement factors = $f_2(RH)$ Why: standardized in-situ measurements are taken in "dry" conditions (RH<30%)

Main result: extinction enhancement factor becomes larger than 2 for RH>90%, with uncertainty increasing with RH (from ~15% to ~25%).

Procedure:

-Measurements

- -Site: EMEP-GAW station at Ispra (IT04-IPR), Italy.
- -Period analyzed: 1062 hourly data during 2008-2009
- -In-situ instruments: DMPS, APS, nephelometer, aethalometer, HTDMA
- -Input data errors: $\pm 10\%$ NSD, $\pm 3\%$ diameter (DMPS, APS), $\pm 1.5\%$ aerosol scattering and backscattering (nephelometer), ± 4% aerosol absorption (aethalometer), ± 3% growth factor at
- -HTDMA retrievals are performed using TDMAfit software (Gysel et al. 2009).

-Mie theory

Enhancement factors:
$$f_{\chi}(RH,\lambda) = \frac{\chi(RH,\lambda)}{\chi(RH=0,\lambda)}$$

where γ can be σ , α , κ or β , denoting the scattering, absorption, extinction or backscatter coefficient respectively. RH corresponds to the ambient conditions.

Methodology is sketched in the flow cart. The main steps are:

- -Determine refractive index at instruments RH, by matching σ and α measurements and Mie calculations (Figs. 2-3).
- -Determine the refractive index in dry conditions (RH=0%) and at ambient RH (Fig. 3).
- -Calculate $\sigma,\,\alpha,\,\kappa$ or β in dry and ambient conditions
- -Calculate enhancement factors (as ambient / dry) (Fig. 5)

- 1) eliminate points for which the relative error between measurements and Mie is > 30%
- 2) Eliminate points for which retrieved refractive index at instruments RH is 1.3 or 1.7 (limits on lookup
- 3) Remove outliers in the Mie-measurements regression
- \Rightarrow From 1062 points \Rightarrow 564 points

Error computation

- sensitivity study: there is one run using the overestimated input parameters (ε_ν=+n% error) and one run using underestimated input parameters (ε,=-n% error).
- For each variable y computed along the flow chart, its uncertainty will be given by the average between the relative errors with respect to the case of ε_x =0:

 $\varepsilon_{v} = 100\frac{1}{2}$

y corresponds to the input parameters x (ε_v =0, i.e. no error in input parameters), while y_m and y_n correspond to the input parameters x- ϵ_x and x+ ϵ_x respectively

- at high RH (>90%) enhancement factors can reach values of \sim 6, 5,1.2 and 4 for σ , α , κ and β (Fig. 5); a seasonal/diurnal behaviour is expected
- very good correlation between enhancement (except α) factors and growth factors (Fig. 6)
- large difference for g (asymmetry param.) between empirical formula and Mie calculations (Fig. 4) errors (e.g. 10.02.2008)
- -There is a strong correlation between the error and RH for the imaginary part of refractive index. GF, σ , κ , β , $f_{\gamma}(RH)$ for $\chi = \sigma$, κ , and β (Fig. 8)
- -Average error for other variables are shown in Table 1. Note also that the largest error occur for the imaginary part of refractive index

Conclusions

The scheme involved to determine enhancement factors can be used to correct for the optical measurements taken in dry conditions: knowing the aerosol GF(RH), one applies the relationship between f(RH) and GF(RH) (Fig. 6) and obtain f(RH). Then, apply eq. (1) to get σ , α , κ or β at RH. A careful estimation of the uncertainty is necessary. The estimation of the weights of each particular input error is under investigation.

Andrews, E., et al.: Comparison of methods for deriving aerosol asymmetry parameter, J. Geophys. Res., 111, D05S04, doi:10.1029/2004.ID005734.2006

Gysel, M., et al., Inversion of tandem differential mobility analyser (TDMA) measurements, J. Aerosol Sci., 40, 134-151,

