
Immersed Boundary Method (IBM)Abstract
We present a method for performing simulations dynamic ice 
shelves within a dynamical ocean model (the Parallel Ocean 
Program, POP) using an immersed boundary method (IBM) 
to represent the geometry of the ice/ocean interface. The IBM 
is used to couple POP to the Community Ice Sheet Model 
(CISM). The IBM allows for geometrically correct 
representation of the boundary conditions at the ocean/ice 
interface without the need for a grid that conforms to the 
boundary or changes in time. The interface is free to move in 
time as the ice sheet evolves.
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Fig. 1: Steady State
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Fig. 2: Unstable?
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Fig. 3: Ocean Flow Simulated in Ice
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Fig. 5: A Single Forcing Point

Fig. 8: Melting Ice, New Ocean
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Fig. 4: Forcing at “Ghost” Points
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Fig. 6: Moving Immersed Boundary
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Fig. 7: Turbulent Boundary Layer

Future Work 
Development of the IBM is nearing completion, with a series 
of tests on simplified problems (e.g., the Ice-Ocean Model 
Inter-comparison Project, ISOMIP, experiment) currently in 
progress. Coupling of the ice sheet and ocean models in the 
Community Earth System Model (CESM) is also in progress.
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Many Antarctic ice shelves:
• Steady state
• Both melting and freezing

Vulnerable ice shelves (Amundsen and Bellings-
hausen Embayments):

• Accessible to warm circumpolar deep water (CDW)
• Only melting: ice shelf retreats
• Instability, further retreat?

• Enforce boundary conditions on u, T and S
• Fictitious ocean flow in ice shelf/ice sheet

• No need for time-variant or boundary conforming grid
• Boundary can move freely as ice advances/retreats

Image point method: 
• Interpolate u, T, S to image point from neighbor points 
• Use boundary conditions to extrapolate to ghost point
• Coupled problem if boundary point is a neighbor point

• Forcing at “ghost point” in fictitious flow
• Find u, T, S values that produce desired 

mass, heat and salt fluxes

Turbulent Boundary Layer Physics

• Analytic sub-grid-scale model
• Based on McPhee (2008)
• Balance of turbulent diffusion and Coriolis force
• Accounts for stratification (η*)
• Fit to rational polynomials for comp. efficiency

u(n)− u(0) =Φu(u∗, η∗)u∗

Φu(u∗, η∗) ≈u∗/(a1η∗ + a2η∗u∗ + a3η
2
∗u∗)

S(n)− S(0) = 〈w′S′〉0 /u∗(Φturb(n, η∗, u∗) + ΦS,mol)

Φturb(n, η∗, u∗) ≈nu∗/[n(c1 + c2u∗ + c3η∗u∗) + c4u
2
∗]

Retreating Ice Sheet 

• In black, current ice sheet/ice shelf extent
• In blue, bedrock below sea level
• IBM: blue areas are “true” or “fictitious” ocean
• Map base on RTopo-1(Timmermann et al. 2010)
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