The use of adaptive meshes in ocean modelling: considerations from simulations of the lock-exchange flow

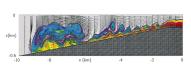
Hannah R. Hiester Matthew D. Piggott Peter A. Allison

Applied Modelling and Computation Group Department of Earth Science and Engineering Imperial College London

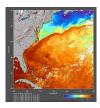
European Geosciences Union General Assembly 2011 Acknowledgements: Adrian Gill Travel Award (EGU); Imperial College Trust

Imperial College

London


Conclusions

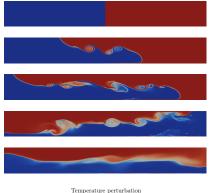
Motivation


- The challenge of modelling transient and dynamic processes in the ocean.
- Consider the potential for the use of adaptive meshes.
- ► Use the lock-exchange to investigate this approach.

Evisat, ESA

T. M. Özgökmen and E. P. Chassignet, Journal of Physical Oceanography, 32, 2002

Johns Hopkins University,


Applied Physics Laboratory

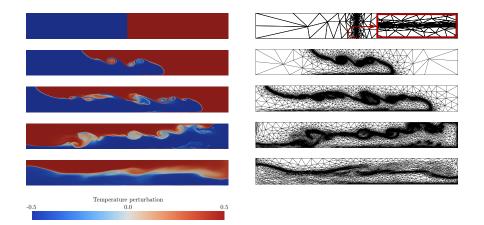
The lock-exchange

- Simple set up
- Laboratory scale
- Incorporates key physical processes
- Complex and turbulent flow
- Widely studied

Imperial College

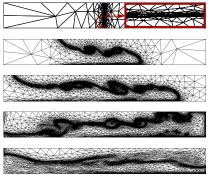
London

The Imperial College Ocean Model (Fluidity-ICOM)


- Finite-element model
- Navier-Stokes equations under the Boussinesq approximation
- Non-hydrostatic formulation
- http://amcg.ese.ic.ac.uk/FLUIDITY
- Mesh generation with Gmsh: http://www.geuz.org/gmsh/
- Incorporates adaptive mesh techniques

Imperial College

Adaptive meshes

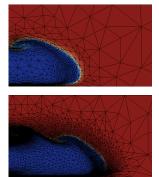


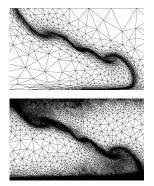
Imperial College London

Dynamic adaptive remeshing

- Metric formation
 M = M(H, ε)
 H: Hessian
 ε: user-defined weight
 Remesh - Ani2D
 http://math.lanl.gov/
 ~lipnikov/Research/
 AniGrids/AniGrids.html
 Interpolation
 - Temperature perturbation 0.0 0.5

Imperial College


London

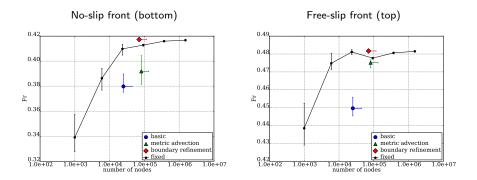

-0.5

Metric formation

Metric advection

Temperature perturbation 0.0 Boundary refinement, $\epsilon = \epsilon(\mathbf{x})$

Imperial College London



-0.5

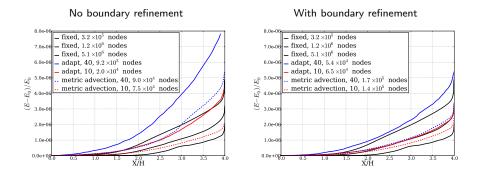
The use of adaptive meshes in ocean modelling http://amcg.ese.ic.ac.uk/hhiester

0.5

Froude number

Froude number, $Fr = U/\sqrt{g'H}$ with U: front speed, g': reduced gravity and H: domain height

Results taken from Hiester et al. The impact of mesh adaptivity on the gravity current front speed in a twodimensional lock-exchange, In Press, Ocean Modelling, doi:10.1016/j.ocemod.2011.01.003.


The use of adaptive meshes in ocean modelling http://amcg.ese.ic.ac.uk/hhiester

Imperial College

Conclusions

Mixing

Background Potential Energy, E: the potential energy of the system reference state

Changes in background potential energy \rightarrow diapycnal mixing

K. B. Winters et al., Journal of Fluid Mechanics, 289, 1995; Y. Tseng and J. H. Ferziger, Physics of Fluids, 13, 2001

The use of adaptive meshes in ocean modelling http://amcg.ese.ic.ac.uk/hhiester Imperial College London

•

Summary

- Use of a simple metric allows the adaptive mesh to capture the flow features.
- Resolution is important at
 - the boundaries.
 - the interface.
- Additional guidance of the metric achieved by
 - spatial variation of the user-defined weights,
 - the use of metric advection.
- The adaptive meshes can have comparable Froude numbers and mixing to the high resolution fixed meshes whilst using at least one order of magnitude fewer nodes.

Imperial College

Conclusions

- The metric is key to the ability of the adaptive mesh to represent the flow.
- The adaptive mesh simulations allowed the importance of flow features to be distinguished.
- The decrease in the number of nodes used by the adaptive meshes is encouraging for 3D simulations and ocean-scale domains.
- Provides a sound platform for future use and development of adaptive meshes in ocean modelling.

Imperial College

Thursday 7th April, OS4.4, Room 6

 16.30: Fast and accurate multi-spectral optics in an ocean model, Michael Lange.

Friday 8th April, OS4.4, Poster Hall X/Y, 10.30-12.00:

- XY426: A wetting and drying algorithm for non-hydrostatic models with combined pressure/free-surface, Simon Funke.
- ► XY424: How do you fit an ocean on a graphics card? David Ham.
- XY439: Ocean ecosystem modelling in in an adaptive mesh model: a performance evaluation, Jon Hill.

Friday 8th April, NP6.5, Room 13

► 13.30: Flow past topography in relation to the Antarctic Circumpolar Current, Alistair McVicar.

Friday 8th April, NP6.1, Poster Hall X/Y 13.30-15.00:

 XY378: Eddy parameterisations from data-driven coarse-graining of Lagrangian trajectories, Colin Cotter.

Imperial College

London

