

Faculty of Forest, Geo and Hydro Sciences – Institute of Hydrology and Meteorology

Sebastian Kloss, Niels Schütze, Sabine Walser, Jens Grundmann

Comparison of Different Model-Based Deficit Irrigation Strategies to Maximize Water Productivity of Corn

EGU General Assembly 2011 Vienna, 05.04.2011

Content

Overview

- 1. Background
- 2. Basics
- 3. Experimental outline
- 4. Results

Introduction/Motivation

Background – Current Situation

Agriculture

Soil degradation and soil depletion through:

- Extensive farming
- Excessive irrigation
- Heavy use of synthetic fertilizers
- → Soils lost for agriculture

WWF

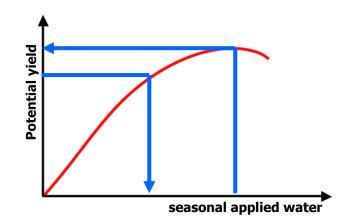
Population growth

- Still 852 million people are chronically hungry and
- 2 billion people lack food security due to poverty (FAO 2003)
- Food security is becoming increasingly difficult to maintain

Current agricultural yields are insufficient to feed the growing populations (USAID)

- → Addressing agriculture and population growth to reduce food insecurity
- → For agriculture, strategies are needed that:
 - Improve crop growth
 - Make irrigation efficient and sustainable
 - Preserve farmland through better cultivation practices

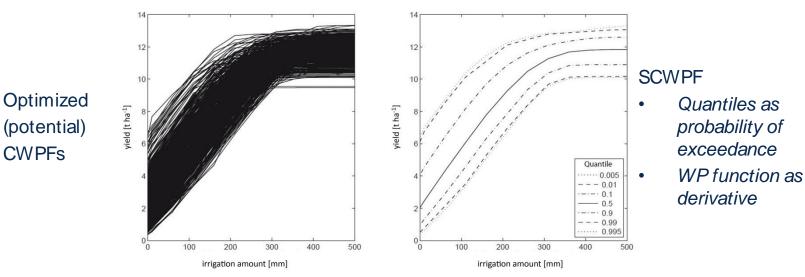
Strategies


Improving water use efficiency (WUE) or water productivity (WP)

 $=\frac{\text{gain}}{\text{its expenses}}=\frac{\text{assimilated carbon, yield, biomass}}{\text{irrigation water, transpiration sum, evapotranspiration}}$

- by controlled deficit irrigation (CDI)
 Deliberate deprivation of irrigation water during crop growth
 - → Reduced water consumption and reduced yields
 - → Increases WP to a certain point

2 commonly used approaches for CDI:


- Field experiments
- Simulation-based studies

Stochastic Simulation-Based Approach

- Allows for consideration of climate variability (soil variability or salinity also possible)
- Application of the stochastic planning tool for Optimal Climate Change Adaption Strategies for Irrigation (OCCASION)
 - consists of:
 - i. weather generator for a statistically sound number of climate time series
 - ii. problem specific algorithm for optimal irrigation scheduling
 - iii. crop model for simulating plant growth and water consumption
- Results are crop water production functions (CWPFs) → statistical analysis → stochastic crop water production function (SCWPF)

Methodology

Experimental Outline

Investigation of different water deficit strategies in an irrigation experiment

Silage maize grown in a vegetation hall

• Variety Pioneer PR35Y65

Setup comprised of 9 containers (A=0.52m², 5 plants)

- Each container represents one treatment
- 3 different treatments, 3 replicates
- Alignment of plants resembles field condition
- Application of irrigation water by drip lines

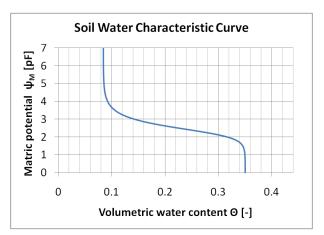
Monitoring of soil moisture and tension

- In different heights
- TDR and pF-Meter

Irrigation control

- Tension-based
- Through pF-Meter (advantage over tensiometer)

Measurement principle: Heat capacity Range: pF 0...pF 7, -40...+80°C Resolution: 0.01 pF, 0.1°C

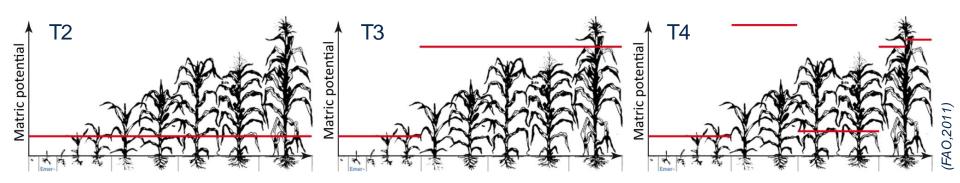

Treatment Setup

Determined prior to the experiment with OCCASION

- Simulation with crop model Daisy
- Objective: maximizing the 90% -quantile of WP

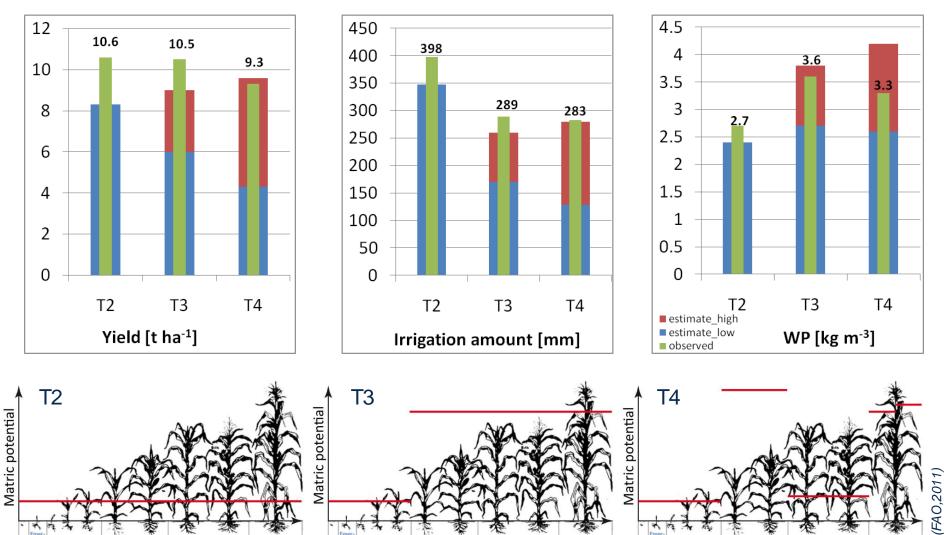
Input data

- Climate:
 - Global radiation and temperature from adjacent climate station (20-year time series)
 - 100 realizations created
- Crop parameterization:
 - Parameterization from an open land experiment
- Soil parameterization
 - Infiltration experiment
 - Inverse soil hydraulic parameter estimation (Hydrus 2D)
 - Soil properties:
 - Loamy sand
 - Clay 3.3%, silt 17.5%, sand 79.2%



Treatments

Soil tension-based irrigation schedules with different threshold levels


	Treatment characteristics	Irrigation time	Redistribution time	Growth period	Tension threshold	Application amount
T2	Full irrigation	1h	Зh		-130 cm	7.2 mm
Т3	Constant threshold			Establishment	-130 cm -1250 cm	7.2 mm 6 mm
T4	Growth period adapted threshold			Establishment Vegetative Flowering Yield formation Ripening	-130 cm -1400 cm -150 cm -1250 cm -1300 cm	7.2 mm 6.0 mm 2.9 mm 11.6 mm 2.2 mm

Results

Overview

Conclusion

Summary

Achieved WPs lie in good agreement with predicted outcome

- High WPs achieved (2.7 3.6 kg m⁻³)
- Values from literature: 0.65 2.92 kg m⁻³ (Zw art 2004)

Determination of the tension thresholds prior to the experimental run combined with pF-meters for irrigation control successfully applied

Improvements to be implemented:

- Due to the wide range of yields and irrigation amounts
 - → Extending the objective of maximizing WP by including a minimum target yield
- Volume-based irrigation schedule
 - \rightarrow Application of weekly amounts of irrigation water

Outlook:

Simulation of all experiments \rightarrow Recalibration and reoptimization of the model Second series of experiments