Menu









HS8.3.2

Monitoring and modelling for transfer processes in the soil-plant-atmosphere continuum
Convener: Nunzio Romano  | Co-Conveners: Rafael Angulo-Jaramillo , Christopher (Kit) Macleod 
Oral Programme
 / Tue, 05 Apr, 08:30–12:00  / Room 34
Poster Programme
 / Attendance Tue, 05 Apr, 17:30–19:00  / Display Tue, 05 Apr, 08:00–19:30  / Hall A

Soil is a critically important component of the earth's biosphere, not only because of its role in food production, but also because of its crucial role in the hydrological cycle. For a better understanding of the functional interactions between natural resources (like soil, water, and plants) and related sustainability problems, the scientific community is becoming aware that more interdisciplinary approaches are required. One should no longer rely solely on detailed studies of fundamental hydrological processes, but also assess the effects exerted by the space-time evolution of these processes on distribution and functionality of terrestrial ecosystems, i.e. ecohydrology rather than simply hydrology.
Progress has been achieved in advancing scientific knowledge on the soil-plant-atmosphere continuum (SPAC) and understanding the controls on hydrologic fluxes as well as how these controls vary spatially and temporally with scale. Researches on water and nutrient transfer within SPAC at various scales are receiving substantial stimulus from soil scientists, plant physiologists, ecologists, and climatologists, both experimentally and theoretically. A focus of renewed interest is also the vegetation-groundwater interactions not only because of preferential macropore flow of water from the vadose zone toward the aquifer, but partly because of reduced recharge for soil water extractions, which subsequently affect runoff generation phenomena. Monitoring and parameterizing water transfer in SPAC deal even more with questions of differences in space-time resolution among the available information (e.g., remote sensing data versus field measured variables) and deriving grid-averaged equivalent parameters to represent ecohydrologic processes at different space-time scales (e.g., for hillslope hydrology or precision agriculture problems).
This session aims at creating a forum for scientists of different disciplines to share experiences on the above and related subjects. We solicit contributions to the following topics (but not limited to):
- Advanced techniques for monitoring variables of soil water balance and vegetation dynamics;
- Use of methods to parameterise soil hydraulic behaviour across heterogeneous landscapes;
- Modelling water transfer in SPAC, with influence of vegetation patterns and possible effects of preferential flow through soil macropores;
- Searching for suitable agro-environmental indicators enabling the pressures exerted on ecosystems to be quantified.

Studies of soil and ecohydrological processes are supported by the present availability of comprehensive computer models, but are often restricted by practical limitations on the amount of data and parameters that can be collected in the field. Therefore, emphasis will be on bringing together experimental and modelling experts to discuss the progress in describing soil and ecohydrological phenomena and the results of studies that integrate model development with laboratory and field monitoring methods.