



## Changes of fluid flow regimes in a complex calcite vein network (Natih Formation, Oman Mountains): Insights from Stable Isotope Analysis

M. Arndt (1), S. Virgo (1), S. Cox (2), and J. Urai (1)

(1) Structural Geology, Tectonics and Geomechanics, RWTH-Aachen University, Aachen, Germany

(m.arndt@ged.rwth-aachen.de), (2) Research School of Earth Sciences, The Australian National University, Canberra, Australia (Stephen.Cox@anu.edu.au)

We measured  $\delta^{13}\text{C}$  and  $\delta^{18}\text{O}$  compositions of calcite veins and their immediate limestone host-rock from an intensely veined outcrop at the top of the middle Cretaceous (Turonian) Natih A Formation in the Central Oman Mountains (Virgo and Arndt, 2010). The  $\delta^{18}\text{O}$  composition of the limestone host-rock in the studied pavement ranges from  $22.5\text{\textperthousand}$  to  $23.7\text{\textperthousand}$ . The  $\delta^{13}\text{C}$  composition ranges from  $1.1\text{\textperthousand}$  to  $1.9\text{\textperthousand}$ . This range of compositions is depleted in  $^{18}\text{O}$  relative to unaltered Cretaceous marine limestones ( $24.7\text{--}28.8\text{\textperthousand}$  after Veizer and Hoefs, 1976). However, in a regional isotopic survey of the limestone sequence, Wagner (1990) has shown that the  $\delta^{18}\text{O}$  composition of the Natih A Formation can range from  $23.3\text{\textperthousand}$  to  $26.3\text{\textperthousand}$ . The depleted C/O isotopic compositions are results of meteoric diagenesis during subaerial exposure (Wagner, 1990; Grelaud et al., 2006). The  $\delta^{18}\text{O}$  compositions of vein calcite vary from  $22.5\text{\textperthousand}$  to  $26.2\text{\textperthousand}$ , while  $\delta^{13}\text{C}$  compositions range from  $-0.8\text{\textperthousand}$  to  $2.2\text{\textperthousand}$ . Two compositional trends are apparent for vein calcite data. In trend A there is a spread in  $\delta^{13}\text{C}$  values from host rock compositions to values nearly  $1.3\text{\textperthousand}$  lower than the immediate host rock, while  $\delta^{18}\text{O}$  remains constant. Microstructural observations have shown high contrasts of  $\delta^{13}\text{C}$  within the same sample, indicating episodic fluid flow. We don't observe reaction haloes. In the second composition range (trend B) a number of vein calcite samples have  $\delta^{18}\text{O}$  values up to  $3.3\text{\textperthousand}$  higher than the immediate host rock range, whereas the  $\delta^{13}\text{C}$  compositions are similar to the host-rock values. The majority of the trend B samples are from a late, E-W trending fault vein that cross cuts any other extension vein of the network and has a normal displacement. Episodic fluid flow is indicated by high contrast of  $\delta^{18}\text{O}$  values within the same sample. By combining our observations with existing literature we propose that (1) meteoric diagenesis has altered the top of Natih A during meteoric diagenesis. (2) After burial a complex and dense network of crack-seal extension veins formed promoting vertical fluid flow (bringing in lower  $\delta^{13}\text{C}$  values) in terms of meters and lateral fluid flow in terms of 10s of meters (rock buffered veins). (3) The change in fluid flow is reflected by trend B of enriched  $\delta^{18}\text{O}$  values constraint to a later fault vein. The fault vein has tapped a fluid reservoir at a deeper stratigraphic level with high  $\delta^{18}\text{O}$  values that have a typical Cretaceous marine limestone composition ( $26.2\text{\textperthousand}$ ).

C. Grelaud, P. Razin, P. W. Homewood, and A. M. Schwab, "Development of Incisions on a Periodically Emergent Carbonate Platform (Natih Formation, Late Cretaceous, Oman)," *Journal of Sedimentary Research*, vol. 76, no. 4, pp. 647 -669, Apr. 2006.

Veizer and J. Hoefs, "The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks," *Geochimica et Cosmochimica Acta*, vol. 40, no. 11, pp. 1387-1395, Nov. 1976.

S. Virgo and M. Arndt, "Evolution of a crack-seal calcite vein network in limestone: a high resolution structural, microstructural and geochemical study from the Jebel Akhdar high pressure cell, Oman Mountains," RWTH-Aachen University, Aachen, 2010.

P. D. Wagner, "Geochemical stratigraphy and porosity controls in Cretaceous carbonates near the Oman Mountains," *Geological Society, London, Special Publications*, vol. 49, no. 1, pp. 127 -137, Jan. 1990.