

Amino sugar dynamics in forest soil exposed to increased nitrogen deposition – Composition and turnover in soil density fractions

M. Griepentrog (1), S. Bodé (2), P. Boeckx (2), and M.W.I. Schmidt (1)

(1) Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

(marco.griepentrog@geo.uzh.ch), (2) Department of Applied Analytical and Physical Chemistry (ISOFYS), Ghent University, Coupure Links 653, 9000 Ghent, Belgium

Anthropogenic activity increased atmospheric nitrogen (N) deposition, also in typically N-limited ecosystems such as forests. It is not clear, however, how the increased N-availability affects soil carbon, the largest carbon pool in terrestrial ecosystems. One potential response caused by chronic N-deposition is a shift from fungal- to bacterial-dominated microbial community. To differentiate between fungal- and bacterial-derived organic residues we used microbial cell-wall-constituents (i.e. amino-sugars) as reliable molecular markers. Here, we tested the effects of chronic N-deposition on amino-sugar dynamics by studying their composition and turnover in forest soil fractions.

We used soil samples from a 4-year elevated CO₂ and N-deposition experiment in model forest ecosystems, that were fumigated with ¹³C-depleted CO₂ and treated with two levels of ¹⁵N-labeled fertilizer. Bulk soil was separated into free light fraction, occluded light fraction and heavy fraction by density fractionation and ultrasonic dispersion. The heavy fraction was further particle-size fractionated with 20 μ m as a cut-off. We determined carbon and nitrogen concentrations and their isotopic compositions ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$) within bulk soil and density fractions. We extracted and quantified amino-sugars and conducted compound-specific stable-isotope-analysis using LC-c-IRMS.

N-deposition did not affect carbon allocation between soil fractions. From light to heavy, fractions were more enriched in ¹³C and more depleted in ¹⁵N. Carbon fixed during the experiment was preferentially incorporated into free light fraction material. Except for heavy fraction material smaller than 20 μ m, N-deposition showed no effects on distribution of new carbon in soil fractions. Besides bulk soil data we will present data on amino-sugar dynamics in forest soil fractions based on a combined ¹³C and ¹⁵N labeling experiment.