

Evaluating and quantifying the potential for CO₂ leakage through the caprock during carbon sequestration using a Risk Matrix

K. Edlmann
University of Edinburgh

Geological sequestration of CO₂ in deep aquifers or depleted oil/gas reservoirs is considered a solution for reducing excess CO₂ currently being emitted to the atmosphere. Low permeability cap rocks trap the CO₂ that is then sequestered in the underlying porous reservoir or aquifer rock.

The long term dependability of CO₂ sequestration is directly linked to the integrity of the caprock seals effectively trapping the CO₂. Evaluation and quantification of all of the possible CO₂ leakage risks and their severity and probability throughout the life of the carbon sequestration timescale is essential.

This study aims to identify the CO₂ leakage risks, analyse them and then evaluate the impact of each risk - will it cause leakage, how will it leak and how much will it leak? The risks assessed covered all factors that may lead to CO₂ leakage including those associated with matrix permeability, CO₂ diffusion, aquifer flow, scCO₂ flow properties, capillary transport, effective and relative permeability of the scCO₂ / brine / pore system, migration through fracture and microfracture network both existing and induced, geological discontinuities and the wellbore and drilling environment.

The risks were assessed by assigning a severity and probability to each identified risk. Severity was ranked from 1 to 5; where 1 was mm scale intrusion and 5 was leakage above the top caprock. Probability was also ranked from 1 to 5; where 1 was likelihood of happening after 10,000 years and 5 was likelihood of it happening during injection.

A risk matrix was produced which highlights the risks that will have the most significant impact on CO₂ sequestration reliability.