

Imaging of urban sinkhole structures - combination of P-wave and shear-wave reflection seismic profiling in the metropolitan region of Hamburg

C.M. Krawczyk (1), U. Polom (1), and T. Dahm (2)

(1) Leibniz Institute for Applied Geophysics (LIAG), Hannover, Germany, (2) Hamburg University, Hamburg, Germany

The investigated roof region of a salt diapir in Hamburg, northern Germany, suffers sinkhole activity that was accompanied lately by microseismic events in the Gross Flottbek quarter. Thus, a high geohazard potential is present which can only be evaluated if highly resolved structural data are available.

In addition to a shear-wave reflection seismic survey we performed with our shear-wave seismic system (ELVIS microvibrator, 120 m land streamer with 1 m SH-geophone distance), we also measured two P-wave reflection seismic profiles with the aim of imaging the top of the salt diapir. The LIAG- minivibrator and planted geophones of 5 m distance were used. The main profile runs along the major shear-wave line, the other crosses perpendicularly, so that a good areal coverage is given.

Top salt is suggested at ca. 180 m depth, which is slightly deeper than previously thought from gravimetric measurements and larger-scale modelling. However, the general dip of the salt flank is further corroborated by additional gravimetric measurements. The surface of the salt dome undulates in the 10 m-range. Variable continuity of reflective elements and amplitude further characterize the top salt surface, which will be discussed in the context of fault and subrosion structures revealed from the shear-wave seismic experiment.