

The influence of water on the Peierls stress of olivine at high pressures

S. Mei (1), A. M. Suzuki (1), L. Xu (1), D. L. Kohlstedt (1), N. A. Dixon (2), and W. B. Durham (2)

(1) University of Minnesota, Minneapolis, USA, (2) Massachusetts Institute of Technology, Cambridge, USA

To investigate the influence of water on the low-temperature plasticity of olivine under lithospheric conditions, we carried out a series of creep experiments on polycrystalline olivine at high pressures (~ 6 GPa), relatively low temperatures ($873 \leq T \leq 1173$ K), and hydrous conditions using a deformation-DIA. Samples were fabricated from fine powdered San Carlos olivine under hydrous conditions. In the experiments, a sample column composed of a sample and alumina pistons was assembled with a talc sleeve and graphite resistance heater into a 6.2-mm edge length cubic pressure medium. Experiments were carried out at the National Synchrotron Light Source at Brookhaven National Laboratory. In a run, differential stress and sample displacement were monitored in-situ using synchrotron x-ray diffraction and radiography, respectively. The low-temperature plasticity of olivine under hydrous conditions is constrained by our data with a Peierls stress of 4.2 ± 0.3 GPa. This value is much lower than those reported the Peierls stress for olivine under anhydrous conditions ($\sim 6 - 15$ GPa, Evans and Goetze, 1979; Raterson et al., 2004; Mei et al., 2010), indicating a significant influence of water on the low-temperature plasticity of olivine. The low-temperature flow behavior of olivine under hydrous conditions quantified in this study provides a necessary constraint for modeling the dynamic activities occurring within lithospheric mantle especially for those regions with the presence of water such as beneath a mid-ocean ridge and along a subducting slab.