

A model to study the Venus cloud structure based on recent ground-based and space observations

S. Takagi (1), A. Mahieux (2), S. Robert (2), V. Wilquet (2), R. Drummond (2), A. C. Vandaele (2), and N. Iwagami (1)

(1) Department of Earth and Planetary Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, (2) IASB - BIRA, Atmosphere, Brussels, Belgium (arnaud.mahieux@aeronomie.be, +32 23730426)

Venus is our nearest neighbor, and has a size very similar to the Earth's. However, previous spacecraft missions discovered an extremely dense (92 bar at the surface) and CO₂-rich atmosphere, with H₂SO₄ clouds located at altitudes between 40 and 70 km. These clouds cover the whole planet.

A cloud model was proposed by Pollack et al. (1993), with vertical distributions of different cloud particles classified into 3 distinct modes. This model could be improved using new data obtained in the recent past from ground-based observations (IRTF telescope in Hawaii) and in-situ measurements from spacecraft observations (SOIR on Venus Express). A new cloud model, correcting for some Pollack model's limitations, was proposed using data from previous entry probes [Takagi Iwagami, 2011]. However, this model could not describe the global Venus cloud structure.

The purpose of the current work is to construct a more realistic cloud model based on ground-based spectroscopic observations of the Venus low-latitude region and on Venus Express/SOIR observations at high-latitude. We will present the model and discuss some results obtained on the cloud structure of Venus.