

Data based 3D modelling of the southwest African continental margin

J. Freymark (1,2), J. Sippel (1), M. Scheck-Wenderoth (1), H.-J. Götze (3), and C. Reichert (4)

(1) Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany, (2) University of Potsdam, Germany, (3) Christian Albrechts University Kiel, Germany, (4) Federal Institute for Geosciences and Natural Resources, Hannover, Germany

The volcanic passive continental margin of southwest Africa was formed in consequence of rifting and continental break-up of Gondwana in the Late Mesozoic. Our study focusses on an area extending from the Walvis Ridge in the north to the Agulhas Falkland Fracture Zone in the south including some important petroliferous sedimentary basins such as the Walvis Basin, the Luderitz Basin, and the Orange Basin. Due to decades of industrial exploration and scientific research, some of these areas reveal a large pool of structural and geophysical data. Thus, much is known about the individual tectonic and depositional histories of several subdomains of the area. The goal of our study is to understand the margin in its entirety.

We present a 3D model of the present-day configuration of the southwest African continental margin. This model integrates well information, seismic reflection and refraction data, a previously published 3D structural model (Maystrenko et al., 2011), as well as freely available global data sets on the crustal structure (e.g. crust2.0 of Bassin, Laske & Masters, 2000). To extrapolate local information on crustal thickness (respectively the depth of the Moho) across the whole margin, we perform 3D gravity modelling using the software IGMAS+ (Götze & Schmidt, 2010; Schmidt et al., 2011). As parts of the first results, we show margin-wide depth and thickness distributions of a Palaeozoic to Cenozoic sedimentary layer and a Paleoproterozoic to Mesozoic crystalline crustal layer.

References:

Bassin, C., Laske, G. and Masters, G. (2000): The Current Limits of Resolution for Surface Wave Tomography in North America (EOS Trans AGU, v. 81, F897)

Götze, H.-J. & Schmidt, S. (2010): IGMAS+: A new 3D gravity, FTG and magnetic modelling software tool (In R. J. L. Lane (editor), Airborne Gravity 2010 - Expanded abstracts from the ASEG-PESA Airborne Gravity 2010 Workshop: Published jointly by Geoscience Australia and the Geological Survey of New South Wales, Geoscience Australia Record 2010/23 and GSNSW File GS2010/0457, pp. 91-96, ISBN 978-1-921781-17-9)

Schmidt, S.; Plonka, C.; Götze, H.-J. & Lahmeyer, B. (2011): Hybrid modelling of gravity, gravity gradients and magnetic fields (Geophysical Prospecting, vol. 59, pp. 1046-1051, doi: 10.1111/j.1365-2478.2011.00999.x)

Maystrenko, Y. P.; Scheck-Wenderoth, M.; Hartwig, A.; Anka, Z.; Watts, A. B. & Hirsch, K. K. (2011): 3D structural model of the West African continental margin (EGU General Assembly, Vienna, Austria, Geophysical Research Abstracts, v. 13)