

Simulation of submarine gas hydrate deposits as a sustainable energy source and CO₂ storage

G. Janicki, T. Hennig, S. Schlüter, and G. Deerberg

Fraunhofer UMSICHT, Process Technology, Oberhausen, Germany (georg.janicki@umsicht.fhg.de, +49 208 8598 1295)

Being aware that conventionally exploitable natural gas resources are limited, research concentrates on the development of new technologies for the extraction of methane from gas hydrate deposits in subsea sediments. The quantity of methane stored in hydrate form is considered to be a promising means to overcome future shortages in energy resources. In combination with storing carbon dioxide (CO₂) as hydrates in the deposits chances for sustainable energy supply systems are given.

The combustion of hydrate-based natural gas can contribute to the energy supply, but the coupled CO₂ emissions cause climate change effects. At present, the possible options to capture and subsequently store CO₂ (CCS-Technology) become of particular interest. To develop a sustainable hydrate-based energy supply system, the production of natural gas from hydrate deposits has to be coupled with the storage of CO₂. Hence, the simultaneous storage of CO₂ in hydrate deposits has to be developed.

Decomposition of methane hydrate in combination with CO₂ sequestration appears to be promising because CO₂ hydrate is stable within a wider range of pressure and temperature than methane hydrate. As methane hydrate provides structural integrity and stability in its natural formation, incorporating CO₂ hydrate as substitute for methane hydrate will help to preserve the natural sediments' stability.

Regarding the technological implementation, many problems have to be overcome. Especially heat and mass transfer in the deposits are limiting factors causing very long process times.

Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and UMSICHT HyReS.

By means of abstract scenarios, the effects occurring during gas production and CO₂ storage within a hydrate deposit are identified and described. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is discussed and compared for different production strategies: depressurization, CO₂ injection after depressurization and simultaneous methane production and CO₂ injection.