

Variability of shelf sea pH and surface water CO₂ in response to North Atlantic Oscillation forcing

L. Salt (1,2), H. Thomas (2), A.E.F. Prowe (3), A.V. Borges (4), and H.J.W. de Baar (1)

(1) Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands, (2) Dalhousie University, Department of Oceanography, Halifax, NS, Canada, (3) GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 10, 24105 Kiel, Germany, (4) Chemical Oceanography Unit, MARE, University of Liège, 4000 Liège, Belgium

High biological activity causes a distinct seasonality of surface water pH in the North Sea, which has been identified as a strong sink for atmospheric CO₂ via a particularly effective shelf pump. The intimate connection between the North Sea and the North Atlantic suggests that the variability of the CO₂ system of the North Atlantic Ocean may in part be responsible for the observed, but hitherto poorly understood variability of pH and CO₂ in the North Sea. Here we investigate the role of the North Atlantic Oscillation (NAO), the dominant climate mode for the North Atlantic hemisphere in governing this variability. Based on three extensive observational records covering the relevant levels of the NAO index, we provide evidence that the North Sea pH and CO₂ system strongly responds to external and internal expressions of the NAO. We argue that under NAO+ conditions higher rates of inflow of water from the North Atlantic Ocean limits seasonal shoaling of the summer mixed layer in the northern North Sea, diminishing the biological potential to lower pCO₂ and raise pH. In addition the faster circulation of the North Sea enhances the shelf pump efficiency. These clear patterns are obscured by changing properties of the North Sea waters, masking or enforcing these effects on various time scales. Such controls indicate that inter-annual trends in the North Sea CO₂ system must be carefully examined with consideration to the North Atlantic Oscillation.