Geophysical Research Abstracts Vol. 14, EGU2012-5317-1, 2012 EGU General Assembly 2012 © Author(s) 2012

Particulate associated nitrification and N2O production along Changjiang plume

S.-Y. Hsiao (1), T.-C. Hsu (1), H. Lin (1), J.-W. Liu (2), J. Lin (2), H.-J. Wang (2), M. Dai (2), S.-J. Kao (1,2) (1) Academia Sinica, Research Center of Environmental Research, Taipei, Taiwan (agno3hsiao@gmail.com), (2) State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China

We separately measured nitrification rates associated with particle and particle-free (bulk and 3μ m filtered water sample) along Changjiang plume in 2011 August. ¹⁵NH₄ spiking method was applied and the production of ¹⁵N in N₂, N₂O and nitrate plus nitrite pool were determined. The bulk nitrification rate varied in a wide range from 0.72 ~ 973.25 nMday⁻¹, which accounts for 2.37~33.68% of oxygen consumption per day. Particulate associated nitrification contributed 62.7±48.9% of bulk nitrification. Rate of particulate associated nitrification was positively correlated with apparent oxygen demand (AOU) and total suspended material concentration (TSM) suggesting that particle associated nitrification is tightly coupled to decomposition of particulate organic matter. On the other hand, non-particulate associated nitrification was negatively correlated to AOU and TSM. N₂O producing rate via nitrification significantly increased with TSM highlighting the importance of N₂O emission from turbid river.