

Foraminifera Mg/Ca palaeothermometry in a high CO₂ world – appropriate correction for secular change in seawater chemistry

D. Evans and W. Müller

Department of Earth Sciences, Royal Holloway University of London, UK (correspondence: david.evans.2007@rhul.ac.uk)

Palaeotemperature estimates using both the Mg/Ca ratio and $\delta^{18}\text{O}$ of foraminifera suffer from uncertainties regarding the composition of seawater, particularly during the Paleogene where climate reconstruction is a priority. The fundamental difference between these techniques is that proxy information exists for secular change in seawater Mg/Ca, whereas past $\delta^{18}\text{O}_{\text{seawater}}$ values have to be assumed, as even though changes in the bulk composition of seawater can be calculated (depending on reconstructed ice volume), $\delta^{18}\text{O}_{\text{seawater}}$ is locally highly variable. Despite this principal advantage of Mg/Ca thermometry, the majority of currently published Mg/Ca temperature reconstructions are likely to be inaccurate: The previously used methodology for the required correction for temporal variation of seawater Mg/Ca has assumed that a linear relationship exists between Mg/Ca_{seawater} and Mg/Ca_{foraminifera}. However, recent studies [e.g. 1] have demonstrated that this is not the case, and that a power relationship between these two parameters best describes the data.

We will show the difference between these two correction techniques, focusing on why assuming a linear correction has led to incorrect foraminiferal constraints regarding the Mg/Ca ratio of the past oceans, particularly in the Paleogene. Furthermore, we demonstrate that by comparing Mg/Ca and $\delta^{18}\text{O}$ results from foraminifera that existed in an ice free world it is possible to indirectly calibrate the relationship between Mg/Ca_{seawater} and Mg/Ca_{foraminifera}. Whilst previous assumptions do not result in error in the reconstructed magnitude of temperature change over Cenozoic climate transitions, it is likely that (depending on the assumptions of a particular study) absolute temperature estimates require revision. This particularly applies to results from time periods associated with significant Antarctic ice volume, which leads to greater uncertainty in $\delta^{18}\text{O}_{\text{seawater}}$.

[1] Segev & Erez, 2006, *Geochem. Geophys. Geosys.*, 7(2).