

Destruction of the peridotite-eclogite liquidus barrier during mantle magma differentiation (experiment at 7.0 GPa).

Dr Butvina

IEM RAS, Chernogolovka, Russian Federation (valkil@yandex.ru)

The main purpose of this paper is an experimental study of phase relationships in the model system forsterite-diopside-jadeite at pressure of 7 GPa and foundation of possible physico-chemical correct transitions between peridotite and eclogite parageneses with overcoming liquidus "eclogite" thermal barrier. To construct a diagram of a ternary system forsterite-diopside-jadeite it is necessary to study its boundary binary sections forsterite-jadeite and forsterite-diopside as well as a number of internal polythermic sections. The section jadeite-diopside at 7 GPa has been studied earlier and it is characterized by the unlimited miscibility of jadeite and diopside components in solid and liquid states.

The experimental results obtained at the initial stage of the investigation of this problem can be characterized as follows.

Forsterite-jadeite section.

The experiments in this section have been done in the temperature range of 1100-18000C on which basis the construction of fusibility diagram of the system forsterite-jadeite at 7 GPa has been started. The obtained experimental data testify to the existence in the system of the liquidus fields $\text{Fo} + \text{L}$, $\text{GrtSS} + \text{L}$ and CpxSS (on the basis of jadeite phase) $+ \text{L}$, as well as show indirectly a possible appearance of orthopyroxene as a liquidus phase. In subsolidus experiments olivine-bearing assemblages on the basis of the paragenesis $\text{Ol} + \text{Grt} + \text{Opx} + \text{Cpx}$ are found. Garnet there is not a pure pyrope, but has the molecule $\text{Na}_2\text{MgSi}_5\text{O}_12$ (Na-majorite) what manifests itself in the direct correlation of Na and Si in the equations of this phase. OpxSS is not a pure enstatite, but forms a complicated solid solution $\text{En} + \text{Jd} + \text{Mg-Ts}$. With jadeite content increase in the system olivine-bearing assemblages transfer into non-olivine ones, up to the assemblage $\text{Cpx} + \text{Grt}$ (jadeite-clinopyroxene has also enstatite component) being indirect evidence of a peritectic character of solidus in this system) what has also been shown earlier in (Gasparik et al., 1997). Due to this fact forsterite vanishes in subsolidus in the region of compositions rather enriched by jadeite component. The performed experimental investigations testify to complex topological relations of phases in this system at close solidus temperatures what needs further studies. The experimental investigations done earlier and referring to this system testify to the appearance of a new phase of the composition $\text{Na}_2\text{Mg}_2\text{Si}_2\text{O}_7$, which role in the formation of subliquidus and subsolidus assemblages must be more studied. Nevertheless, the obtained preliminary experimental data contain constructive data that make it possible to consider the basic problem of this work and start experimental investigations of liquidus phase relations of the system forsterite-diopside-jadeite.

The system forsterite-diopside.

The experiments in this section are given at pressure of 7 GPa in the range of temperatures 1600-17000C. The system is pseudobinary due to the appearance of orthopyroxene component that forms an independent phase. According to the preliminary data liquidus assemblages of this system at 7 GPa are $\text{Fo} + \text{L}$ $\text{DiSS} + \text{L}$, but the type of melting is eutectic. It agrees with the above investigations at pressure of 3 GPa where some pseudobinarity of the system forsterite-diopside caused by the appearance of orthopyroxene mineral in clinopyroxene solid solution can be also seen.

The system forsterite-jadeite-diopside.

The experimental data and conclusions obtained for the boundary systems make it possible to start investigating liquidus surface for fusibility diagram of the ternary system forsterite-jadeite-diopside at $P = 7$ GPa. For the experimental study polythermic sections of forsterite-(jadeite50diopside50) and forsterite-(jadeite25diopside75) have been chosen. The obtained data testify to the fact that olivine vanishing and garnet formation are realized in both sections. The problem of further investigations is to search minimum concentrations of jadeite in the composition of this system where a total olivine vanishing takes place.

Thus, the performed experimental investigations of the model system forsterite-diopside-jadeite at pressure 7 GPa testify to the fact that forsterite (olivine) is a stable phase in the boundary system forsterite-diopside (olivine-clinopyroxene). While introducing rather low contents of jadeite component into the composition of this

system the reaction of jadeite component with forsterite takes place in the melt. As a result, garnet appears as liquidus phase.

With the increase of the jadeite component concentration in the system the field of liquidus garnet expands, but a physico-chemical control of crystallization differentiation of the remnant melts transforms from the monovariant coteuctics $\text{Fo} + \text{DiSS} + \text{L}$ through the invariant peritectic point $\text{Fo} + \text{DiSS} + \text{Grt} + \text{L}$ to the monovariant coteuctics $\text{Grt} + \text{Cpx} + \text{L}$, which is responsible for crystallization of bimimeral garnet-omphazite eclogite parageneses. The obtained experimental results testify unambiguously to the fact that in the system Fo-Di-Jd a physico-chemical mechanism of overcoming liquidus peridotite-eclogite barrier at mantle magma differentiation is realized. Thus, a gradual transition from olivine-bearing assemblages to those close by their characteristics to bimimeral eclogites is provided.